Share:
Share this content in WeChat
X
Review
Research progress of T1 mapping MRI in dilated cardiomyopathy
ZHAO Kaidi  CAO Xinshan 

Cite this article as ZHAO K D, CAO X S. Research progress of T1 mapping MRI in dilated cardiomyopathy[J]. Chin J Magn Reson Imaging, 2024, 15(5): 204-208. DOI:10.12015/issn.1674-8034.2024.05.033.


[Abstract] Dilated cardiomyopathy (DCM) is a common disease of the cardiovascular system with a strong family history of impaired systolic function caused by the expansion or enlargement of the ventricular cavity. Late gadolinium enhancement (LGE) can be widely used as an effective means for the diagnosis of noninvasive myocardial fibrosis, but its accuracy in the diagnosis of diffuse myocardial fibrosis is lacking, so it has certain limitations in clinical application. In recent years, the clinical application of T1 mapping technology has brought great changes to medical imaging, especially for the diagnosis, recognition and prognosis of diffuse myocardial fibrosis. It can detect T1 value and extracellular volume (ECV) with high accuracy. Conduct a comprehensive evaluation of DCM. This paper summarized the latest progress in the application of T1 mapping and ECV in the early diagnosis, identification of related diseases, risk stratification, prognosis assessment and therapeutic efficacy assessment of DCM patients, aiming to improve the early detection rate of DCM and make more accurate judgment on the progression of patients' disease, so as to formulate the best treatment strategy for patients. It is expected to improve the prognosis of patients and provide a reference direction for future research.
[Keywords] dilated cardiomyopathy;myocardial diffuse fibrosis;T1 mapping;extracellular volume fraction;magnetic resonance imaging;early diagnosis

ZHAO Kaidi   CAO Xinshan*  

Department of Radiology, Affiliated Hospital of Binzhou Medical College, Binzhou 256600, China

Corresponding author: CAO X S, E-mail: byfycxs@126.com

Conflicts of interest   None.

Received  2024-01-24
Accepted  2024-04-23
DOI: 10.12015/issn.1674-8034.2024.05.033
Cite this article as ZHAO K D, CAO X S. Research progress of T1 mapping MRI in dilated cardiomyopathy[J]. Chin J Magn Reson Imaging, 2024, 15(5): 204-208. DOI:10.12015/issn.1674-8034.2024.05.033.

[1]
ELMING M B, HAMMER-HANSEN S, VOGES I, et al. Myocardial fibrosis and the effect of primary prophylactic defibrillator implantation in patients with non-ischemic systolic heart failure-DANISH-MRI[J/OL]. Am Heart J, 2020, 221: 165-176 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/31955812/. DOI: 10.1016/j.ahj.2019.10.020.
[2]
HEIDENREICH J F, WENG A M, DONHAUSER J, et al. T1- and ECV-mapping in clinical routine at 3 T: differences between MOLLI, ShMOLLI and SASHA[J/OL]. BMC Med Imaging, 2019, 19(1): 59 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/31370821/. DOI: 10.1186/s12880-019-0362-0.
[3]
FRUTOS F D, OCHOA J P, NAVARRO-PEÑALVER M, et al. Natural history of MYH7-related DilatedCardiomyopathy[J]. J Am Coll Cardiol, 2022, 80(15): 1447-1461. DOI: 10.1016/j.jacc.2022.07.023.
[4]
SAROHI V, SRIVASTAVA S, BASAK T. A comprehensive outlook on dilated cardiomyopathy (DCM): state-of-the-art developments with special emphasis on OMICS-based approaches[J/OL]. J Cardiovasc Dev Dis, 2022, 9(6): 174 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/35735803/. DOI: 10.3390/jcdd9060174.
[5]
COSTA M C, CALDERON-DOMINGUEZ M, MANGAS A, et al. Circulating circRNA as biomarkers for dilated cardiomyopathy etiology[J]. J Mol Med, 2021, 99(12): 1711-1725. DOI: 10.1007/s00109-021-02119-6.
[6]
PENG C, ZHANG Y X, LANG X Y, et al. Role of mitochondrial metabolic disorder and immune infiltration in diabetic cardiomyopathy: new insights from bioinformatics analysis[J/OL]. J Transl Med, 2023, 21(1): 66 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/36726122/. DOI: 10.1186/s12967-023-03928-8.
[7]
GASPAR A S, MALTÊS S, MARQUES H, et al. Myocardial T1 mapping with magnetic resonance imaging - a useful tool to understand the diseased heart[J]. Rev Port Cardiol, 2022, 41(1): 61-69. DOI: 10.1016/j.repc.2021.04.005.
[8]
FANG Q M, HUANG K Y, YAO X Y, et al. The application of radiology for dilated cardiomyopathy diagnosis, treatment, and prognosis prediction: a bibliometric analysis[J]. Quant Imaging Med Surg, 2023, 13(10): 7012-7028. DOI: 10.21037/qims-23-34.
[9]
LIANG K T, BARITUSSIO A, PALAZZUOLI A, et al. Cardiovascular magnetic resonance of myocardial fibrosis, edema, and infiltrates in heart failure[J]. Heart Fail Clin, 2021, 17(1): 77-84. DOI: 10.1016/j.hfc.2020.08.013.
[10]
DONG Z X, YIN G, YANG K, et al. Endogenous assessment of late gadolinium enhancement grey zone in patients with non-ischaemic cardiomyopathy with T1ρ and native T1 mapping[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(4): 492-502. DOI: 10.1093/ehjci/jeac128.
[11]
PUNTMANN V O, VOIGT T, CHEN Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2013, 6(4): 475-484. DOI: 10.1016/j.jcmg.2012.08.019.
[12]
XU J, ZHUANG B, SIRAJUDDIN A, et al. MRI T1 Mapping in Hypertrophic Cardiomyopathy: Evaluation in Patients Without Late Gadolinium Enhancement and Hemodynamic Obstruction[J]. Radiology, 2020, 294(2): 275-286. DOI: 10.1148/radiol.2019190651.
[13]
CUI Q, YU J, GE X H, et al. T1 mapping and late gadolinium enhancement for the diagnosis of dilated cardiomyopathy[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2020, 32(12): 1506-1510. DOI: 10.3760/cma.j.cn121430-20200413-00287.
[14]
HEALTHCARE ENGINEERING J O. Retracted: modified look-locker inverse-recovery (MOLLI) sequence of quantitative imaging in dirty magnetic resonance longitudinal relaxation time diagnostic value of GE combined with longitudinal relaxation time quantitative imaging for myocardial amyloidosis[J/OL]. J Healthc Eng, 2023, 2023: 9897527 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/37860311/. DOI: 10.1155/2023/9897527.
[15]
LIU Y W, NIU H J, YIN H X, et al. A comparative study on phantom verification of T1 and T2 relaxation values determined by synthetic MRI and conventional mapping methods[J]. Chin J Magn Reson Imag, 2022, 13(4): 89-93. DOI: 10.12015/issn.1674-8034.2022.04.016.
[16]
HAYASE J, BRADFIELD J. T1 mapping: a complementary tool for substrate visualization[J]. JACC Clin Electrophysiol, 2023, 9(6): 749-750. DOI: 10.1016/j.jacep.2023.01.038.
[17]
SU M Y, HUANG Y S, NIISATO E, et al. Is a timely assessment of the hematocrit necessary for cardiovascular magnetic resonance-derived extracellular volume measurements?[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 77 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/33250055/. DOI: 10.1186/s12968-020-00689-x.
[18]
MINEGISHI S, KATO S, TAKASE-MINEGISHI K, et al. Native T1 time and extracellular volume fraction in differentiation of normal myocardium from non-ischemic dilated and hypertrophic cardiomyopathy myocardium: a systematic review and meta-analysis[J/OL]. Int J Cardiol Heart Vasc, 2019, 25: 100422 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/31517037/. DOI: 10.1016/j.ijcha.2019.100422.
[19]
ZHANG H Y, ZHU L Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imag, 2023, 14(6): 133-138, 144. DOI: 10.12015/issn.1674-8034.2023.06.024.
[20]
ZHANG Y, ZHANG X N, WANG Y L, et al. Relationship between diffuse fibrosis assessed by CMR and depressed myocardial strain in different stages of heart failure[J/OL]. Eur J Radiol, 2023, 164: 110848 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/37156180/. DOI: 10.1016/j.ejrad.2023.110848.
[21]
WILSON H C, AMBACH S, MADUEME P C, et al. Comparison of native T1, strain, and traditional measures of cardiovascular structure and function by cardiac magnetic resonance imaging in patients with anderson-fabry disease[J]. Am J Cardiol, 2018, 122(6): 1074-1078. DOI: 10.1016/j.amjcard.2018.06.007.
[22]
KRITTAYAPHONG R, ZHANG S, SAIVIROONPORN P, et al. Assessment of cardiac iron overload in thalassemia with MRI on 3.0-T: high-field T1, T2, and T2* quantitative parametric mapping in comparison to T2* on 1.5-T[J]. JACC Cardiovasc Imaging, 2019, 12(4): 752-754. DOI: 10.1016/j.jcmg.2018.08.032.
[23]
THAVENDIRANATHAN P, SHALMON T, FAN C S, et al. Comprehensive cardiovascular magnetic resonance tissue characterization and cardiotoxicity in women with breast cancer[J]. JAMA Cardiol, 2023, 8(6): 524-534. DOI: 10.1001/jamacardio.2023.0494.
[24]
XANTHIS C G, NORDLUND D, JABLONOWSKI R, et al. Comparison of short axis and long axis acquisitions of T1 and extracellular volume mapping using MOLLI and SASHA in patients with myocardial infarction and healthy volunteers[J/OL]. BMC Med Imaging, 2019, 19(1): 18 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/30795746/. DOI: 10.1186/s12880-019-0320-x.
[25]
BURRAGE M K, SHANMUGANATHAN M, ZHANG Q, et al. Cardiac stress T1-mapping response and extracellular volume stability of MOLLI-based T1-mapping methods[J/OL]. Sci Rep, 2021, 11(1): 13568 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/34193894/. DOI: 10.1038/s41598-021-92923-4.
[26]
GEZMIŞ E, PEEBLES C, FLETT A, et al. Comparison of MOLLI and ShMOLLI in terms of T1 reactivity and the relationship between T1 reactivity and conventional signs of response during adenosine stress perfusion CMR[J]. Balkan Med J, 2020, 37(5): 260-268. DOI: 10.4274/balkanmedj.galenos.2020.2019.12.161.
[27]
BOHNEN S, RADUNSKI U K, LUND G K, et al. T1 mapping cardiovascular magnetic resonance imaging to detect myocarditis-Impact of slice orientation on the diagnostic performance[J/OL]. Eur J Radiol, 2017, 86: 6-12 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/28027767/. DOI: 10.1016/j.ejrad.2016.10.031.
[28]
YANAGISAWA F, AMANO Y, TACHI M, et al. Non-contrast-enhanced T1 mapping of dilated cardiomyopathy: comparison between native T1 values and late gadolinium enhancement[J]. Magn Reson Med Sci, 2019, 18(1): 12-18. DOI: 10.2463/mrms.mp.2017-0136.
[29]
BURKHARDT B E U, MENGHINI C, RÜCKER B, et al. Normal myocardial native T1 values in children using single-point saturation recovery and modified look-locker inversion recovery (MOLLI)[J]. J Magn Reson Imaging, 2020, 51(3): 897-903. DOI: 10.1002/jmri.26910.
[30]
SHAO X N, JIN Y N, SUN Y J, et al. Evaluation of the correlation between myocardial fibrosis and ejection fraction in dilated cardiomyopathy using magnetic resonance T1 mapping[J]. Eur Rev Med Pharmacol Sci, 2020, 24(23): 12300-12305. DOI: 10.26355/eurrev_202012_24022.
[31]
YAZAKI M, NABETA T, TAKIGAMI Y, et al. Native T1 high region and left ventricular ejection fraction recovery in patients with dilated cardiomyopathy[J]. Int J Cardiovasc Imaging, 2023, 39(9): 1785-1793. DOI: 10.1007/s10554-023-02888-w.
[32]
GAO Y, WANG H P, LIU M X, et al. Early detection of myocardial fibrosis in cardiomyopathy in the absence of late enhancement: role of T1 mapping and extracellular volume analysis[J]. Eur Radiol, 2023, 33(3): 1982-1991. DOI: 10.1007/s00330-022-09147-x.
[33]
DEM SIEPEN F AUS, BUSS S J, MESSROGHLI D, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy[J]. Eur Heart J Cardiovasc Imaging, 2015, 16(2): 210-216. DOI: 10.1093/ehjci/jeu183.
[34]
AL-WAKEEL-MARQUARD N, SEIDEL F, HERBST C, et al. Diffuse myocardial fibrosis by T1 mapping is associated with heart failure in pediatric primary dilated cardiomyopathy[J/OL]. Int J Cardiol, 2021, 333: 219-225 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/33737165/. DOI: 10.1016/j.ijcard.2021.03.023.
[35]
THONGSONGSANG R, SONGSANGJINDA T, TANAPIBUNPON P, et al. Native T1 mapping and extracellular volume fraction for differentiation of myocardial diseases from normal CMR controls in routine clinical practice[J/OL]. BMC Cardiovasc Disord, 2021, 21(1): 270 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/34082703/. DOI: 10.1186/s12872-021-02086-3.
[36]
EL-REWAIDY H, NEISIUS U, NAKAMORI S, et al. Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T1 mapping[J/OL]. PLoS One, 2020, 15(6): e0233694 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/32479518/. DOI: 10.1371/journal.pone.0233694.
[37]
MORDI I, CARRICK D, BEZERRA H, et al. T1 and T2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(7): 797-803. DOI: 10.1093/ehjci/jev216.
[38]
ZHANG J, XU Y W, LI W H, et al. The predictive value of myocardial native T1 mapping radiomics in dilated cardiomyopathy: a study in a Chinese population[J]. J Magn Reson Imaging, 2023, 58(3): 772-779. DOI: 10.1002/jmri.28527.
[39]
KIAOS A, ANTONAKAKI D, BAZMPANI M A, et al. Prognostic value of cardiovascular magnetic resonance T1 mapping techniques in non-ischemic dilated cardiomyopathy: a systematic review and meta-analysis[J/OL]. Int J Cardiol, 2020, 312: 110-116 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/32320782/. DOI: 10.1016/j.ijcard.2020.04.052.
[40]
LI Y J, XU Y W, LI W H, et al. Cardiac MRI to predict sudden cardiac death risk in dilated cardiomyopathy[J/OL]. Radiology, 2023, 307(3): e222552 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/36916890/. DOI: 10.1148/radiol.222552.
[41]
ZHANG X N, JIANG Y Q, ZHAO L L, et al. Differential diagnostic value of T1 mapping and tissue tracking techniques in diseases associated with left ventricular hypertrophy[J]. Chin J Magn Reson Imag, 2022, 13(12): 32-37. DOI: 10.12015/issn.1674-8034.2022.12.006.
[42]
VITA T, GRÄNI C, ABBASI S A, et al. Comparing CMR mapping methods andMyocardial patterns toward HeartFailure outcomes in NonischemicDilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 2): 1659-1669. DOI: 10.1016/j.jcmg.2018.08.021.
[43]
LI S, ZHOU D, SIRAJUDDIN A, et al. T1 mapping and extracellular volume fraction in dilated cardiomyopathy: a prognosis study[J]. JACC Cardiovasc Imaging, 2022, 15(4): 578-590. DOI: 10.1016/j.jcmg.2021.07.023.
[44]
ZHOU D, ZHU L Y, WU W C, et al. A novel cardiac magnetic resonance-based personalized risk stratification model in dilated cardiomyopathy: a prospective study[J/OL]. Eur Radiol, 2023 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/37950081/. DOI: 10.1007/s00330-023-10415-7.
[45]
YOUN J C, HONG Y J, LEE H J, et al. Contrast-enhanced T1 mapping-based extracellular volume fraction independently predicts clinical outcome in patients with non-ischemic dilated cardiomyopathy: a prospective cohort study[J]. Int J Med Radiol, 2017, 40(6): 737.
[46]
WANG J Q, DIAO Y K, XU Y W, et al. Liver T1 mapping derived from cardiac magnetic resonance imaging: a potential prognostic marker in idiopathic dilated cardiomyopathy[J/OL]. J Magn Reson Imaging, 2024 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/38174826/. DOI: 10.1002/jmri.29223.
[47]
XU Y W, LI W H, WAN K, et al. Myocardial tissue reverse remodeling after guideline-directed medical therapy in idiopathic dilated cardiomyopathy[J/OL]. Circ Heart Fail, 2021, 14(1): e007944 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/33185117/. DOI: 10.1161/CIRCHEARTFAILURE.120.007944.
[48]
XU Y W, LI Y J, WANG S Q, et al. Prognostic value of mid-term cardiovascular magnetic resonance follow-up in patients with non-ischemic dilated cardiomyopathy: a prospective cohort study[J/OL]. J Cardiovasc Magn Reson, 2024, 26(1): 101002 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/38237899/. DOI: 10.1016/j.jocmr.2024.101002.
[49]
INUI K, ASAI K, TACHI M, et al. Extracellular volume fraction assessed using cardiovascular magnetic resonance can predict improvement in left ventricular ejection fraction in patients with dilated cardiomyopathy[J]. Heart Vessels, 2018, 33(10): 1195-1203. DOI: 10.1007/s00380-018-1154-0.
[50]
ZHANG T Y, FENG Y L, WU X Q, et al. The application of cardiovascular magnetic resonance in risk stratification and prognosis evaluation in dilated cardiomyopathy[J]. Chin J Magn Reson Imag, 2021, 12(3): 95-97, 101. DOI: 10.12015/issn.1674-8034.2021.03.023.
[51]
MCDIARMID A K, SWOBODA P P, ERHAYIEM B, et al. Single bolus versus split dose gadolinium administration in extra-cellular volume calculation at 3 Tesla[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 6 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/25638228/. DOI: 10.1186/s12968-015-0112-6.

PREV Research progress in imaging prediction of recurrence of ischemic stroke
NEXT A review on imaging in evaluating tumor regression grade after neoadjuvant theatment for locally advanced colorectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn