Share:
Share this content in WeChat
X
Review
A review on imaging in evaluating tumor regression grade after neoadjuvant theatment for locally advanced colorectal cancer
LU Ting  WANG Yuanyuan  ZHOU Fengyu  DONG Wenjie  YANG Haiting  ZHOU Junlin 

Cite this article as LU T, WANG Y Y, ZHOU F Y, et al. A review on imaging in evaluating tumor regression grade after neoadjuvant theatment for locally advanced colorectal cancer[J]. Chin J Magn Reson Imaging, 2024, 15(5): 209-215, 221. DOI:10.12015/issn.1674-8034.2024.05.034.


[Abstract] Colorectal cancer is one of the common malignancies of the digestive system, about 60%-70% of colorectal cancer patients have locally advanced rectal cancer (LARC) at the time of diagnosis, neoadjuvant therapy (NAT) is the standard treatment for patients with LARC, in recent years, with NAT showing good treatment response in LARC, NAT has also been initially used in locally advanced colorectal cancer, but not all patients with locally advanced colorectal cancer (LACRC) can benefit from NAT. Consequently, it is an urgent clinical problem to accurately evaluate the treatment response of NAT and screen the NAT dominant population before surgery. There is abundant evidence that imaging can be used to assess the response of LACRC-NAT preoperatively. Therefore, this article reviews the application status, advantages and limitations of computed tomography, MRI, positron emission tomography/computed tomography, radiomics and deep learning in the evaluation of the response of LACRC-NAT, aiming to improve the accuracy of imaging evaluation of the response of LACRC-NAT and provide a comprehensive and objective imaging basis for the clinical formulation of individualized NAT protocols.
[Keywords] colorectal cancer;neoadjuvant treatment;treatment response assessment;computed tomography;magnetic resonance imaging;artificial intelligence

LU Ting1, 2, 3, 4   WANG Yuanyuan1, 2, 3, 4   ZHOU Fengyu1, 2, 3, 4   DONG Wenjie1, 2, 3, 4   YANG Haiting1, 2, 3, 4   ZHOU Junlin1, 2, 3, 4*  

1 Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Second Clinical School, Lanzhou University, Lanzhou 730000, China

3 Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China

4 Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730030, China

Corresponding author: ZHOU J L, E-mail: lzuzjl601@163.com

Conflicts of interest   None.

Received  2024-01-17
Accepted  2024-03-21
DOI: 10.12015/issn.1674-8034.2024.05.034
Cite this article as LU T, WANG Y Y, ZHOU F Y, et al. A review on imaging in evaluating tumor regression grade after neoadjuvant theatment for locally advanced colorectal cancer[J]. Chin J Magn Reson Imaging, 2024, 15(5): 209-215, 221. DOI:10.12015/issn.1674-8034.2024.05.034.

[1]
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA A Cancer J Clin, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
[2]
BAI Z Y, ZHAO X X, XU J. Progress of therapeutic efficacy and predictive indicators of neoadjuvant chemoradiotherapy for locally advanced rectal cancer[J]. Cancer Res Clin, 2023, 35(5): 397-400. DOI: 10.3760/cma.j.cn115355-20221125-00742.
[3]
Medical Administration Department of the National Health Commission, Oncology Branch of the Chinese Medical Association. Chinese protocol of diagnosis and treatment of colorectal cancer of the National Health Commission (2023 edition)[J]. Chin J Gastrointest Surg, 2023, 26(6): 505-528. DOI: 10.3760/cma.j.cn441530-20230525-00182.
[4]
DONNELLY M, RYAN O K, RYAN É J, et al. Total neoadjuvant therapy versus standard neoadjuvant treatment strategies for the management of locally advanced rectal cancer: network meta-analysis of randomized clinical trials[J]. Br J Surg, 2023, 110(10): 1316-1330. DOI: 10.1093/bjs/znad177.
[5]
CHEN G, JIN Y, GUAN W L, et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study[J]. Lancet Gastroenterol Hepatol, 2023, 8(5): 422-431. DOI: 10.1016/S2468-1253(22)00439-3.
[6]
WANG L, ZHANG X Y, ZHAO Y M, et al. Intentional watch and wait or organ preservation surgery following neoadjuvant chemoradiotherapy plus consolidation CAPEOX for MRI-defined low-risk rectal cancer: findings from a prospective phase 2 trial (PKUCH-R01 trial, NCT02860234)[J]. Ann Surg, 2023, 277(4): 647-654. DOI: 10.1097/SLA.0000000000005507.
[7]
MORTON D, SEYMOUR M, MAGILL L, et al. Preoperative chemotherapy for operable colon cancer: mature results of an international randomized controlled trial[J]. J Clin Oncol, 2023, 41(8): 1541-1552. DOI: 10.1200/JCO.22.00046.
[8]
ALISEDA D, ARREDONDO J, SÁNCHEZ-JUSTICIA C, et al. Survival and safety after neoadjuvant chemotherapy or upfront surgery for locally advanced colon cancer: meta-analysis[J/OL]. Br J Surg, 2024, 111(2): znae021 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881053. DOI: 10.1093/bjs/znae021.
[9]
VIMALACHANDRAN D. Neoadjuvant chemotherapy for locally advanced colonic cancer is not ready to be the standard of care[J]. Br J Surg, 2023, 110(12): 1677-1678. DOI: 10.1093/bjs/znad184.
[10]
SUN X F, GUAN Z, YAN S, et al. Relationship between abnormal imaging findings of adipose tissue around primary colon cancer and prognosis[J]. Chin J Radiol, 2023, 57(8): 904-911. DOI: 10.3760/cma.j.cn112149-20230413-00276.
[11]
SUN Y S, ZHANG X Y. Evaluation of neoadjuvant therapy for rectal cancer: current situation and challenges[J]. Chin J Med Imag, 2022, 30(9): 875-880. DOI: 10.3969/j.issn.1005-5185.2022.09.002.
[12]
NICHOLLS R J, ZINICOLA R, HABOUBI N. Extramural spread of rectal cancer and the AJCC Cancer Staging Manual 8th edition, 2017[J]. Ann Oncol, 2019, 30(8): 1394-1395. DOI: 10.1093/annonc/mdz147.
[13]
LI J P, ZHANG W K, ZHUANG L /Y)Y, et al. Value of different ADC to access complete response of rectal cancer after neoadjuvant therapy: a Meta analysis[J]. Chin J Magn Reson Imag, 2022, 13(8): 36-42, 54. DOI: 10.12015/issn.1674-8034.2022.08.007.
[14]
LIANG C, AN X X, LI R, et al. Research progress of radiomics in predicting the efficacy of neoadjuvant chemoradiotherapy for locally advanced rectal cancer[J]. Chin J Magn Reson Imag, 2024, 15(1): 224-228. DOI: 10.12015/issn.1674-8034.2024.01.038.
[15]
HU H B, ZHAO S, JIANG H, et al. Predicting the efficacy of neoadjuvant therapy for locally advanced rectal cancer based on 3.0 T MRI and comparing the effectiveness of multiple classifiers[J]. Chin J Magn Reson Imag, 2023, 14(11): 77-83. DOI: 10.12015/issn.1674-8034.2023.11.013.
[16]
CHEN W, WANG Y T, BAI G J, et al. Can lymphovascular invasion be predicted by preoperative contrast-enhanced CT in esophageal squamous cell carcinoma?[J/OL]. Technol Cancer Res Treat, 2022, 21: 15330338221111229 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340382. DOI: 10.1177/15330338221111229.
[17]
CAO X L, LI X D, WANG X Y, et al. Use CT imaging to predict the short-term outcome of concurrent chemoradiotherapy in patients with locally advanced esophageal squamous cell carcinoma[J/OL]. Dose Response, 2019, 17(4): 1559325819897175 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937540. DOI: 10.1177/1559325819897175.
[18]
ZHOU H Y, GUO W W, OU J, et al. A CT-based novel model to predict pathological complete response of locally advanced esophageal squamous cell carcinoma to neoadjuvant PD-1 blockade in combination with chemotherapy[J/OL]. Eur J Radiol, 2023, 167: 111065 [2024-03-12]. https://www.ejradiology.com/article/S0720-048X(23)00379-0/abstract. DOI: 10.1016/j.ejrad.2023.111065.
[19]
JE H J, CHO S H, OH H S, et al. Response prediction after neoadjuvant chemotherapy for colon cancer using CT tumor regression grade: a preliminary study[J]. J Korean Soc Radiol, 2023, 84(5): 1094-1109. DOI: 10.3348/jksr.2022.0124.
[20]
LUO Y S, LIU L L, LIU D H, et al. Extracellular volume fraction determined by equilibrium contrast-enhanced CT for the prediction of the pathological complete response to neoadjuvant chemoradiotherapy for locally advanced rectal cancer[J]. Eur Radiol, 2023, 33(6): 4042-4051. DOI: 10.1007/s00330-022-09307-z.
[21]
YUAN W J, HUANG Z Q, JIA Z Q, et al. Value of dual-layer detector spectral CT quantitative parameters in evaluating treatment response of neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer[J]. Chin J Radiol, 2024, 58(2): 194-200. DOI: 10.3760/cma.j.cn112149-20230825-00127.
[22]
DILEK O, AKKAYA H, PARLATAN C, et al. Can the mesorectal fat tissue volume be used as a predictive factor in foreseeing the response to neoadjuvant chemoradiotherapy in rectum cancer? A CT-based preliminary study[J]. Abdom Radiol, 2021, 46(6): 2415-2422. DOI: 10.1007/s00261-021-02951-x.
[23]
AN Y M, FAN J L, ZUO L P, et al. Advances in the application of CT quantitative muscle characteristics in the staging and predicting prognosis of colorectal cancer[J]. Chin J Radiol, 2024, 58(1): 110-113. DOI: 10.3760/cma.j.cn112149-20230920-00215.
[24]
KIM M, LEE S M, SON I T, et al. Prognostic value of artificial intelligence-driven, computed tomography-based, volumetric assessment of the volume and density of muscle in patients with colon cancer[J]. Korean J Radiol, 2023, 24(9): 849-859. DOI: 10.3348/kjr.2023.0109.
[25]
NIE T, WU F H, HENG Y X, et al. Influence of skeletal muscle and intermuscular fat on postoperative complications and long-term survival in rectal cancer patients[J/OL]. J Cachexia Sarcopenia Muscle, 2024 [2024-03-12]. https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcsm.13424. DOI: 10.1002/jcsm.13424.
[26]
OLMEZ T, OFLUOGLU C B, SERT O Z, et al. The impact of sarcopenia on pathologic complete response following neoadjuvant chemoradiation in rectal cancer[J]. Langenbecks Arch Surg, 2020, 405(8): 1131-1138. DOI: 10.1007/s00423-020-01983-z.
[27]
BEDRIKOVETSKI S, TRAEGER L, VATHER R, et al. Does sarcopenia predict local response rates after chemoradiotherapy for locally advanced rectal cancer?[J]. Dis Colon Rectum, 2023, 66(7): 965-972. DOI: 10.1097/DCR.0000000000002451.
[28]
BEDRIKOVETSKI S, TRAEGER L, PRICE T J, et al. Can sarcopenia predict complete response after total neoadjuvant therapy in advanced rectal cancer? A multicentre observational cohort study[J]. J Surg Oncol, 2023, 128(1): 75-84. DOI: 10.1002/jso.27251.
[29]
TORRI G B, WIETHAN C P, LANGER F W, et al. Split scar sign to predict complete response in rectal cancer after neoadjuvant chemoradiotherapy: systematic review and meta-analysis[J/OL]. Eur Radiol, 2023 [2024-03-12]. https://link.springer.com/article/10.1007/s00330-023-10447-z. DOI: 10.1007/s00330-023-10447-z.
[30]
PATEL U B, TAYLOR F, BLOMQVIST L, et al. Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: mercury experience[J]. J Clin Oncol, 2011, 29(28): 3753-3760. DOI: 10.1200/JCO.2011.34.9068.
[31]
SCLAFANI F, BROWN G, CUNNINGHAM D, et al. Comparison between MRI and pathology in the assessment of tumour regression grade in rectal cancer[J]. Br J Cancer, 2017, 117(10): 1478-1485. DOI: 10.1038/bjc.2017.320.
[32]
PANG X L, XIE P Y, YU L, et al. A new magnetic resonance imaging tumour response grading scheme for locally advanced rectal cancer[J]. Br J Cancer, 2022, 127(2): 268-277. DOI: 10.1038/s41416-022-01801-x.
[33]
OUYANG G L, YANG X B, DENG X B, et al. Predicting response to total neoadjuvant treatment (TNT) in locally advanced rectal cancer based on multiparametric magnetic resonance imaging: a retrospective study[J]. Cancer Manag Res, 2021, 13: 5657-5669. DOI: 10.2147/CMAR.S311501.
[34]
BORASCHI P, CERVELLI R, DONATI F, et al. Response assessment of locally advanced rectal cancer after neoadjuvant chemoradiotherapy: is apparent diffusion coefficient useful on 3T magnetic resonance imaging?[J]. Colorectal Dis, 2023, 25(5): 905-915. DOI: 10.1111/codi.16483.
[35]
LIAN S S, LIU H M, MENG T B, et al. Quantitative synthetic MRI for predicting locally advanced rectal cancer response to neoadjuvant chemoradiotherapy[J]. Eur Radiol, 2023, 33(3): 1737-1745. DOI: 10.1007/s00330-022-09191-7.
[36]
IAFRATE F, CICCARELLI F, MASCI G M, et al. Predictive role of diffusion-weighted MRI in the assessment of response to total neoadjuvant therapy in locally advanced rectal cancer[J]. Eur Radiol, 2023, 33(2): 854-862. DOI: 10.1007/s00330-022-09086-7.
[37]
YANG L Q, XIA C C, ZHAO J, et al. The value of intravoxel incoherent motion and diffusion kurtosis imaging in the assessment of tumor regression grade and T stages after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer[J/OL]. Eur J Radiol, 2021, 136: 109504 [2024-03-12]. https://www.sciencedirect.com/science/article/pii/S0720048X2030694X?via%3Dihub. DOI: 10.1016/j.ejrad.2020.109504.
[38]
FUSCO R, GRANATA V, SANSONE M, et al. Validation of the standardized index of shape tool to analyze DCE-MRI data in the assessment of neo-adjuvant therapy in locally advanced rectal cancer[J]. Radiol Med, 2021, 126(8): 1044-1054. DOI: 10.1007/s11547-021-01369-1.
[39]
CIOLINA M, CARUSO D, SANTIS D D, et al. Dynamic contrast-enhanced magnetic resonance imaging in locally advanced rectal cancer: role ofperfusion parameters in the assessment of response to treatment[J]. Radiol Med, 2019, 124(5): 331-338. DOI: 10.1007/s11547-018-0978-0.
[40]
SCHURINK N W, MIN L A, BERBEE M, et al. Value of combined multiparametric MRI and FDG-PET/CT to identify well-responding rectal cancer patients before the start of neoadjuvant chemoradiation[J]. Eur Radiol, 2020, 30(5): 2945-2954. DOI: 10.1007/s00330-019-06638-2.
[41]
CERNY M, DUNET V, REBECCHINI C, et al. Response of locally advanced rectal cancer (LARC) to radiochemotherapy: DW-MRI and multiparametric PET/CT in correlation with histopathology[J]. Nuklearmedizin, 2019, 58(1): 28-38. DOI: 10.1055/a-0809-4670.
[42]
SAKIN A, SAHIN S, KARYAGAR S S, et al. The predictive value of baseline volumetric PET/CT parameters on treatment response and prognosis in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy[J]. J Gastrointest Cancer, 2022, 53(2): 341-347. DOI: 10.1007/s12029-021-00608-y.
[43]
ŞEN N P K, AKSU A, KAYA G Ç. Value of volumetric and textural analysis in predicting the treatment response in patients with locally advanced rectal cancer[J]. Ann Nucl Med, 2020, 34(12): 960-967. DOI: 10.1007/s12149-020-01527-x.
[44]
LOVINFOSSE P, POLUS M, VAN DAELE D, et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer[J]. Eur J Nucl Med Mol Imaging, 2018, 45(3): 365-375. DOI: 10.1007/s00259-017-3855-5.
[45]
VUIJK F A, FESHTALI SHAHBAZI S, NOORTMAN W A, et al. Baseline and early digital [18F] FDG PET/CT and multiparametric MRI contain promising features to predict response to neoadjuvant therapy in locally advanced rectal cancer patients: a pilot study[J]. Nucl Med Commun, 2023, 44(7): 613-621. DOI: 10.1097/MNM.0000000000001703.
[46]
KUROKAWA R, HAGIWARA A, KUROKAWA M, et al. Diffusion histogram profiles predict molecular features of grade 4 in histologically lower-grade adult diffuse gliomas following WHO classification 2021[J]. Eur Radiol, 2024, 34(2): 1367-1375. DOI: 10.1007/s00330-023-10071-x.
[47]
PHAM T T, LINEY G, WONG K, et al. Multi-parametric magnetic resonance imaging assessment of whole tumour heterogeneity for chemoradiotherapy response prediction in rectal cancer[J]. Phys Imaging Radiat Oncol, 2021, 18: 26-33. DOI: 10.1016/j.phro.2021.03.003.
[48]
JIMÉNEZ DE LOS SANTOS M E, REYES-PÉREZ J A, DOMÍNGUEZ OSORIO V, et al. Whole lesion histogram analysis of apparent diffusion coefficient predicts therapy response in locally advanced rectal cancer[J]. World J Gastroenterol, 2022, 28(23): 2609-2624. DOI: 10.3748/wjg.v28.i23.2609.
[49]
LI D D, CUI Y F, HOU L N, et al. Diffusion kurtosis imaging-derived histogram metrics for prediction of resistance to neoadjuvant chemoradiotherapy in rectal adenocarcinoma: preliminary findings[J/OL]. Eur J Radiol, 2021, 144: 109963 [2024-03-12]. https://www.sciencedirect.com/science/article/pii/S0720048X21004447?via%3Dihub. DOI: 10.1016/j.ejrad.2021.109963.
[50]
SCHURINK N W, VAN KRANEN S R, BERBEE M, et al. Studying local tumour heterogeneity on MRI and FDG-PET/CT to predict response to neoadjuvant chemoradiotherapy in rectal cancer[J]. Eur Radiol, 2021, 31(9): 7031-7038. DOI: 10.1007/s00330-021-07724-0.
[51]
SCHURINK N W, VAN KRANEN S R, ROBERTI S, et al. Sources of variation in multicenter rectal MRI data and their effect on radiomics feature reproducibility[J]. Eur Radiol, 2022, 32(3): 1506-1516. DOI: 10.1007/s00330-021-08251-8.
[52]
SCHURINK N W, VAN KRANEN S R, VAN GRIETHUYSEN J J M, et al. Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer[J]. Eur Radiol, 2023, 33(12): 8889-8898. DOI: 10.1007/s00330-023-09920-6.
[53]
KURATA Y, HAYANO K, OHIRA G, et al. Computed tomography-derived biomarker for predicting the treatment response to neoadjuvant chemoradiotherapy of rectal cancer[J]. Int J Clin Oncol, 2021, 26(12): 2246-2254. DOI: 10.1007/s10147-021-02027-2.
[54]
BORDRON A, RIO E, BADIC B, et al. External validation of a radiomics model for the prediction of complete response to neoadjuvant chemoradiotherapy in rectal cancer[J/OL]. Cancers, 2022, 14(4): 1079 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870201. DOI: 10.3390/cancers14041079.
[55]
NIE K, SHI L M, CHEN Q, et al. Rectal Cancer: assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI[J]. Clin Cancer Res, 2016, 22(21): 5256-5264. DOI: 10.1158/1078-0432.CCR-15-2997.
[56]
WEN L, LIU J, HU P S, et al. MRI-based radiomic models outperform radiologists in predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Acad Radiol, 2023, 30(Suppl 1): S176-S184. DOI: 10.1016/j.acra.2022.12.037.
[57]
QIN S Y, LU S Y, LIU K, et al. Radiomics from mesorectal blood vessels and lymph nodes: a novel prognostic predictor for rectal cancer with neoadjuvant therapy[J/OL]. Diagnostics, 2023, 13(12): 1987 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297215. DOI: 10.3390/diagnostics13121987.
[58]
XU R X, CUI Y F, YANG X T. Predictive of a radiomic model based on enhanced CT portal vein images for predicting neoadjuvant chemotherapy in patients with locally advanced colorectal cancer[J]. Chin J Anat Clin, 2022, 27(7): 449-457. DOI: 10.3760/cma.j.cn101202-20211129-00360.
[59]
TSAI P C, LEE T H, KUO K C, et al. Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients[J/OL]. Nat Commun, 2023, 14(1): 2102 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102208. DOI: 10.1038/s41467-023-37179-4.
[60]
ZHANG F, YAO S, LI Z, et al. Predicting treatment response to neoadjuvant chemoradiotherapy in local advanced rectal cancer by biopsy digital pathology image features[J/OL]. Clin Transl Med, 2020, 10(2): e110 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403709. DOI: 10.1002/ctm2.110.
[61]
SHAO L Z, LIU Z Y, FENG L L, et al. Multiparametric MRI and whole slide image-based pretreatment prediction of pathological response to neoadjuvant chemoradiotherapy in rectal cancer: a multicenter radiopathomic study[J]. Ann Surg Oncol, 2020, 27(11): 4296-4306. DOI: 10.1245/s10434-020-08659-4.
[62]
FENG L L, LIU Z Y, LI C F, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study[J/OL]. Lancet Digit Health, 2022, 4(1): e8-e17 [2024-03-12]. https://www.sciencedirect.com/science/article/pii/S2589750021002156?via%3Dihub. DOI: 10.1016/S2589-7500(21)00215-6.
[63]
LI L L, XU B, ZHUANG Z K, et al. Accurate tumor segmentation and treatment outcome prediction with DeepTOP[J/OL]. Radiother Oncol, 2023, 183: 109550 [2024-03-12]. https://www.sciencedirect.com/science/article/pii/S0167814023000889?via%3Dihub. DOI: 10.1016/j.radonc.2023.109550.
[64]
ZHANG X Y, WANG L, ZHU H T, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI[J]. Radiology, 2020, 296(1): 56-64. DOI: 10.1148/radiol.2020190936.
[65]
HU Y H, LI J, ZHUANG Z K, et al. Automatic treatment outcome prediction with DeepInteg based on multimodal radiological images in rectal cancer[J/OL]. Heliyon, 2023, 9(2): e13094 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918765. DOI: 10.1016/j.heliyon.2023.e13094.
[66]
JIN C, YU H, KE J, et al. Predicting treatment response from longitudinal images using multi-task deep learning[J/OL]. Nat Commun, 2021, 12(1): 1851 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994301. DOI: 10.1038/s41467-021-22188-y.
[67]
KE J, JIN C, TANG J H, et al. A longitudinal MRI-based artificial intelligence system to predict pathological complete response after neoadjuvant therapy in rectal cancer: a multicenter validation study[J/OL]. Dis Colon Rectum, 2023, 66(12): e1195-e1206 [2024-03-12]. https://journals.lww.com/dcrjournal/abstract/2023/12000/a_longitudinal_mri_based_artificial_intelligence.6.aspx. DOI: 10.1097/DCR.0000000000002931.
[68]
OUYANG G L, CHEN Z B, DOU M, et al. Predicting rectal cancer response to total neoadjuvant treatment using an artificial intelligence model based on magnetic resonance imaging and clinical data[J/OL]. Technol Cancer Res Treat, 2023, 22: 15330338231186467 [2024-3-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338728. DOI: 10.1177/15330338231186467.
[69]
ZHOU X Z, YU Y, FENG Y R, et al. Attention mechanism based multi-sequence MRI fusion improves prediction of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J/OL]. Radiat Oncol, 2023, 18(1): 175 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612200. DOI: 10.1186/s13014-023-02352-y.
[70]
JANG B S, LIM Y J, SONG C, et al. Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging[J]. Radiother Oncol, 2021, 161: 183-190. DOI: 10.1016/j.radonc.2021.06.019.

PREV Research progress of T1 mapping MRI in dilated cardiomyopathy
NEXT Research progress of magnetic resonance elastography in abdominal and pelvic cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn