Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance elastography in abdominal and pelvic cancer
ZHANG Xiaoyue  WANG Xiaochun 

Cite this article as ZHANG X Y, WANG X C. Research progress of magnetic resonance elastography in abdominal and pelvic cancer[J]. Chin J Magn Reson Imaging, 2024, 15(5): 216-221. DOI:10.12015/issn.1674-8034.2024.05.035.


[Abstract] The mechanical properties of tumors are closely associated with tumor invasion and progression, and the accurate assessment of tumor tissue stiffness holds significant importance in tumor detection, treatment planning, and prognosis evaluation. Magnetic resonance elastography (MRE) enables the quantification of tissue mechanical properties, noninvasive and quantitative evaluation of tissue stiffness, as well as indirect reflection of the extent of tissue fibrosis. This article provides a review on the fundamental principles, technical advancements, and research status of MRE in abdominal and pelvic tumors with an aim to offer novel insights for future investigations while promoting the continuous maturation of MRE technology to aid in guiding clinical precision diagnosis and treatment.
[Keywords] liver;pancreas;prostate;kidney;neoplasms;magnetic resonance elastography

ZHANG Xiaoyue1   WANG Xiaochun2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: WANG X C, E-mail: 2010xiaochun@163.com

Conflicts of interest   None.

Received  2024-01-25
Accepted  2024-04-17
DOI: 10.12015/issn.1674-8034.2024.05.035
Cite this article as ZHANG X Y, WANG X C. Research progress of magnetic resonance elastography in abdominal and pelvic cancer[J]. Chin J Magn Reson Imaging, 2024, 15(5): 216-221. DOI:10.12015/issn.1674-8034.2024.05.035.

[1]
SALAVATI H, DEBBAUT C, PULLENS P, et al. Interstitial fluid pressure as an emerging biomarker in solid tumors[J/OL]. Biochim Biophys Acta Rev Cancer, 2022, 1877(5): 188792 [2024-03-09]. https://pubmed.ncbi.nlm.nih.gov/36084861/. DOI: 10.1016/j.bbcan.2022.188792.
[2]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[3]
CUI X W, LI K N, YI A J, et al. Ultrasound elastography[J]. Endosc Ultrasound, 2022, 11(4): 252-274. DOI: 10.4103/EUS-D-21-00151.
[4]
MURPHY M C, HUSTON J, EHMAN R L. MR elastography of the brain and its application in neurological diseases[J]. NeuroImage, 2019, 187: 176-183. DOI: 10.1016/j.neuroimage.2017.10.008.
[5]
NIA H T, LIU H, SEANO G, et al. Solid stress and elastic energy as measures of tumour mechanopathology[J/OL]. Nat Biomed Eng, 2016, 1: 0004 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621647/. DOI: 10.1038/s41551-016-0004.
[6]
SAUER F, GROSSER S, SHAHRYARI M, et al. Changes in tissue fluidity predict tumor aggressiveness in vivo[J/OL]. Adv Sci, 2023, 10(26): e2303523 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502644/. DOI: 10.1002/advs.202303523.
[7]
VELLA A, EKO E M, DEL RÍO HERNÁNDEZ A. The emergence of solid stress as a potent biomechanical marker of tumour progression[J]. Emerg Top Life Sci, 2018, 2(5): 739-749. DOI: 10.1042/ETLS20180049.
[8]
GUO J, SAVIC L J, HILLEBRANDT K H, et al. MR elastography in cancer[J]. Invest Radiol, 2023, 58(8): 578-586. DOI: 10.1097/RLI.0000000000000971.
[9]
BUNEVICIUS A, SCHREGEL K, SINKUS R, et al. REVIEW: MR elastography of brain tumors[J/OL]. Neuroimage Clin, 2020, 25: 102109 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909210/. DOI: 10.1016/j.nicl.2019.102109.
[10]
LE BIHAN D, ICHIKAWA S, MOTOSUGI U. Diffusion and intravoxel incoherent motion MR imaging-based virtual elastography: a hypothesis-generating study in the liver[J]. Radiology, 2017, 285(2): 609-619. DOI: 10.1148/radiol.2017170025.
[11]
KROMREY M L, BIHAN D L, ICHIKAWA S, et al. Diffusion-weighted MRI-based virtual elastography for the assessment of liver fibrosis[J]. Radiology, 2020, 295(1): 127-135. DOI: 10.1148/radiol.2020191498.
[12]
SERAI S D, ABU-EL-HAIJA M, TROUT A T. 3D MR elastography of the pancreas in children[J]. Abdom Radiol (NY), 2019, 44(5): 1834-1840. DOI: 10.1007/s00261-019-01903-w.
[13]
TZSCHÄTZSCH H, GUO J, DITTMANN F, et al. Tomoelastography by multifrequency wave number recovery from time-harmonic propagating shear waves[J]. Med Image Anal, 2016, 30: 1-10. DOI: 10.1016/j.media.2016.01.001.
[14]
LE BIHAN D. What can we see with IVIM MRI?[J]. NeuroImage, 2019, 187: 56-67. DOI: 10.1016/j.neuroimage.2017.12.062.
[15]
MOTOSUGI U, ICHIKAWA T, KOSHIISHI T, et al. Liver stiffness measured by magnetic resonance elastography as a risk factor for hepatocellular carcinoma: a preliminary case-control study[J]. Eur Radiol, 2013, 23(1): 156-162. DOI: 10.1007/s00330-012-2571-6.
[16]
HIGUCHI M, TAMAKI N, KUROSAKI M, et al. Longitudinal association of magnetic resonance elastography-associated liver stiffness with complications and mortality[J]. Aliment Pharmacol Ther, 2022, 55(3): 292-301. DOI: 10.1111/apt.16745.
[17]
ICHIKAWA S, MOTOSUGI U, ENOMOTO N, et al. Magnetic resonance elastography can predict development of hepatocellular carcinoma with longitudinally acquired two-point data[J]. Eur Radiol, 2019, 29(2): 1013-1021. DOI: 10.1007/s00330-018-5640-7.
[18]
LI Z T, DENG D L, LIU H B, et al. MR elastography for diagnosing and evaluating pathological differentiation of hepatocellular carcinoma[J]. Chin J Interv Imag Ther, 2022, 19(10): 645-648. DOI: 10.13929/j.issn.1672-8475.2022.10.009.
[19]
THOMPSON S M, WANG J, CHANDAN V S, et al. MR elastography of hepatocellular carcinoma: correlation of tumor stiffness with histopathology features-Preliminary findings[J]. Magn Reson Imaging, 2017, 37: 41-45. DOI: 10.1016/j.mri.2016.11.005.
[20]
HU X M, ZHOU J H, LI Y, et al. Added value of viscoelasticity for MRI-based prediction of ki-67 expression of hepatocellular carcinoma using a deep learning combined radiomics (DLCR) model[J/OL]. Cancers, 2022, 14(11): 2575 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179448/. DOI: 10.3390/cancers14112575.
[21]
VENKATESH S K, YIN M, GLOCKNER J F, et al. MR elastography of liver tumors: preliminary results[J]. AJR Am J Roentgenol, 2008, 190(6): 1534-1540. DOI: 10.2214/AJR.07.3123.
[22]
HE H Q, XU G X, LIU H M, et al. Preliminary study of MR elastography for differentiating hepatic focal benign and malignant tumors[J]. J Pract Radiol, 2017, 33(2): 230-233. DOI: 10.3969/j.issn.1002-1671.2017.02.017.
[23]
LIU W M, RONG D L, ZHU J, et al. Diagnostic accuracy of 3D magnetic resonance elastography for assessing histologic grade of hepatocellular carcinoma: comparison of three methods for positioning region of interest[J]. Abdom Radiol, 2021, 46(10): 4601-4609. DOI: 10.1007/s00261-021-03150-4.
[24]
PAGÉ G, TARDIEU M, BESRET L, et al. Assessing tumor mechanics by MR elastography at different strain levels[J]. J Magn Reson Imaging, 2019, 50(6): 1982-1989. DOI: 10.1002/jmri.26787.
[25]
NICOLLE S, PALIERNE J F, MITTON D, et al. Multi-frequency shear modulus measurements discriminate tumorous from healthy tissues[J/OL]. J Mech Behav Biomed Mater, 2023, 140: 105721 [2024-03-09]. https://pubmed.ncbi.nlm.nih.gov/36791572/. DOI: 10.1016/j.jmbbm.2023.105721.
[26]
HENNEDIGE T P, HALLINAN J T, LEUNG F P, et al. Comparison of magnetic resonance elastography and diffusion-weighted imaging for differentiating benign and malignant liver lesions[J]. Eur Radiol, 2016, 26(2): 398-406. DOI: 10.1007/s00330-015-3835-8.
[27]
GARTEISER P, DOBLAS S, DAIRE J L, et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation[J]. Eur Radiol, 2012, 22(10): 2169-2177. DOI: 10.1007/s00330-012-2474-6.
[28]
SHAHRYARI M, TZSCHÄTZSCH H, GUO J, et al. Tomoelastography distinguishes noninvasively between benign and malignant liver lesions[J]. Cancer Res, 2019, 79(22): 5704-5710. DOI: 10.1158/0008-5472.CAN-19-2150.
[29]
WANG J H, LI X, LI C X, et al. The application value of virtual magnetic resonance elastography based on diffusion weighted imaging in focal liver lesions[J]. Chin J Magn Reson Imag, 2023, 14(11): 56-61. DOI: 10.12015/issn.1674-8034.2023.11.010.
[30]
ZHAO H Y, ZHANG L J, CHEN H D. Liver stiffness measured by magnetic resonance elastography in early recurrence of hepatocellular carcinoma after treatment: a protocol for systematic review and meta analysis[J/OL]. Medicine, 2021, 100(23): e26183 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202664/. DOI: 10.1097/MD.0000000000026183.
[31]
CHO H J, KIM B, KIM H J, et al. Liver stiffness measured by MR elastography is a predictor of early HCC recurrence after treatment[J]. Eur Radiol, 2020, 30(8): 4182-4192. DOI: 10.1007/s00330-020-06792-y.
[32]
ZHANG L N, CHEN J B, JIANG H, et al. MR elastography as a biomarker for prediction of early and late recurrence in HBV-related hepatocellular carcinoma patients before hepatectomy[J/OL]. Eur J Radiol, 2022, 152: 110340 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535659/. DOI: 10.1016/j.ejrad.2022.110340.
[33]
WANG J, SHAN Q G, LIU Y, et al. 3D MR elastography of hepatocellular carcinomas as a potential biomarker for predicting tumor recurrence[J]. J Magn Reson Imaging, 2019, 49(3): 719-730. DOI: 10.1002/jmri.26250.
[34]
PARK S J, YOON J H, LEE D H, et al. Tumor stiffness measurements on MR elastography for single nodular hepatocellular carcinomas can predict tumor recurrence after hepatic resection[J]. J Magn Reson Imaging, 2021, 53(2): 587-596. DOI: 10.1002/jmri.27359.
[35]
LIANG J X, QIU B, YIN S, et al. Predictive value of liver stiffness measurement by magnetic resonance elastography for complications after liver resection: a systematic review and meta-analysis[J]. Digestion, 2022, 103(5): 357-366. DOI: 10.1159/000525081.
[36]
HUI R W, CHAN A C, LO G, et al. Magnetic resonance elastography and proton density fat fraction predict adverse outcomes in hepatocellular carcinoma[J]. Hepatol Int, 2022, 16(2): 371-380. DOI: 10.1007/s12072-022-10305-y.
[37]
LEE D H, LEE J M, YI N J, et al. Hepatic stiffness measurement by using MR elastography: prognostic values after hepatic resection for hepatocellular carcinoma[J]. Eur Radiol, 2017, 27(4): 1713-1721. DOI: 10.1007/s00330-016-4499-8.
[38]
ZHANG T, LI Q, WEI Y, et al. Preoperative evaluation of liver regeneration following hepatectomy in hepatocellular carcinoma using magnetic resonance elastography[J]. Quant Imaging Med Surg, 2022, 12(12): 5433-5451. DOI: 10.21037/qims-22-306.
[39]
CHO H J, AHN Y H, SIM M S, et al. Risk prediction model based on magnetic resonance elastography-assessed liver stiffness for predicting posthepatectomy liver failure in patients with hepatocellular carcinoma[J]. Gut Liver, 2022, 16(2): 277-289. DOI: 10.5009/gnl210130.
[40]
ZHANG H X, CHEN J S, HU X Q, et al. Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression[J/OL]. Bioeng Transl Med, 2023, 8(3): e10518 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189475/. DOI: 10.1002/btm2.10518.
[41]
SHI Y, GAO F, LI Y, et al. Differentiation of benign and malignant solid pancreatic masses using magnetic resonance elastography with spin-echo echo planar imaging and three-dimensional inversion reconstruction: a prospective study[J]. Eur Radiol, 2018, 28(3): 936-945. DOI: 10.1007/s00330-017-5062-y.
[42]
LIU D X, CHEN J J, ZHANG Y F, et al. Magnetic resonance elastography-derived stiffness: potential imaging biomarker for differentiation of benign and malignant pancreatic masses[J]. Abdom Radiol, 2023, 48(8): 2604-2614. DOI: 10.1007/s00261-023-03956-4.
[43]
ZHU L, GUO J, JIN Z Y, et al. Distinguishing pancreatic cancer and autoimmune pancreatitis with in vivo tomoelastography[J]. Eur Radiol, 2021, 31(5): 3366-3374. DOI: 10.1007/s00330-020-07420-5.
[44]
SONG Q K, ZHONG S L, LIU Y Y, et al. MR elastography for evaluation of pathological grade of pancreatic ductal adenocarcinoma[J]. Chin J Magn Reson Imag, 2022, 13(3): 26-30. DOI: 10.12015/issn.1674-8034.2022.03.006.
[45]
REITER R, MAJUMDAR S, KEARNEY S, et al. Investigating the heterogeneity of viscoelastic properties in prostate cancer using MR elastography at 9.4T in fresh prostatectomy specimens[J]. Magn Reson Imaging, 2022, 87: 113-118. DOI: 10.1016/j.mri.2022.01.005.
[46]
LI M S, GUO J, HU P, et al. Tomoelastography based on multifrequency MR elastography for prostate cancer detection: comparison with multiparametric MRI[J]. Radiology, 2021, 299(2): 362-370. DOI: 10.1148/radiol.2021201852.
[47]
HU B, DENG Y, CHEN J B, et al. Evaluation of MR elastography for prediction of lymph node metastasis in prostate cancer[J]. Abdom Radiol, 2021, 46(7): 3387-3400. DOI: 10.1007/s00261-021-02982-4.
[48]
ALDOJ N, BIAVATI F, DEWEY M, et al. Fully automated quantification of in vivo viscoelasticity of prostate zones using magnetic resonance elastography with Dense U-net segmentation[J/OL]. Sci Rep, 2022, 12(1): 2001 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821548/. DOI: 10.1038/s41598-022-05878-5.
[49]
PREZZI D, NEJI R, KELLY-MORLAND C, et al. Characterization of small renal tumors with magnetic resonance elastography: a feasibility study[J]. Invest Radiol, 2018, 53(6): 344-351. DOI: 10.1097/RLI.0000000000000449.
[50]
ZHANG H M, WEN D G, CHEN J, et al. A diagnostic test of three-dimensional magnetic resonance elastography imaging for preoperative prediction of microvascular invasion in patients with T1 stage clear cell renal carcinoma[J]. Transl Androl Urol, 2023, 12(3): 466-476. DOI: 10.21037/tau-23-94.
[51]
WARNER L, YIN M, GLASER K J, et al. Noninvasive in vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography[J]. Invest Radiol, 2011, 46(8): 509-514. DOI: 10.1097/RLI.0b013e3182183a95.
[52]
OBRZUT M, OBRZUT B, ZMUDA M, et al. Uterine leiomyomas: correlation between histologic composition and stiffness via magnetic resonance elastography - a Pilot Study[J]. Ginekol Pol, 2020, 91(7): 373-378. DOI: 10.5603/GP.a2020.0067.
[53]
XIAO Y Q, CHEN W Y, LONG X, et al. 3D MR elastography-based stiffness as a marker for predicting tumor grade and subtype in cervical cancer[J]. Magn Reson Imaging, 2024, 109: 173-179. DOI: 10.1016/j.mri.2024.03.006.
[54]
ZHANG L Q, LONG X, NIJIATI M, et al. Tumor stiffness measured by 3D magnetic resonance elastography can help predict the aggressiveness of endometrial carcinoma: preliminary findings[J/OL]. Cancer Imaging, 2021, 21(1): 50 [2024-03-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399726/. DOI: 10.1186/s40644-021-00420-8.
[55]
HU J X, GUO J, PEI Y G, et al. Rectal tumor stiffness quantified by in vivo tomoelastography and collagen content estimated by histopathology predict tumor aggressiveness[J/OL]. Front Oncol, 2021, 11: 701336 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415020/. DOI: 10.3389/fonc.2021.701336.
[56]
HUANG X Z, ZHOU A Y, LIU M W, et al. Shear wave elasticity differentiation between low- and high-grade bladder urothelial carcinoma and correlation with collagen fiber content[J]. J Ultrasound Med, 2021, 40(1): 113-122. DOI: 10.1002/jum.15381.
[57]
HU X, SUN C Y, REN X P, et al. Contrast-enhanced ultrasound combined with elastography for the evaluation of muscle-invasive bladder cancer in rats[J]. J Ultrasound Med, 2023, 42(9): 1999-2011. DOI: 10.1002/jum.16216.
[58]
OBRZUT M, ATAMANIUK V, EHMAN R L, et al. Evaluation of spleen stiffness in young healthy volunteers using magnetic resonance elastography[J/OL]. Diagnostics, 2023, 13(17): 2738 [2024-03-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486410/. DOI: 10.3390/diagnostics13172738.

PREV A review on imaging in evaluating tumor regression grade after neoadjuvant theatment for locally advanced colorectal cancer
NEXT Research progress of radiomics and deep learning in prostate cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn