Share:
Share this content in WeChat
X
Review
Research progress of radiomics in common gynecologic malignancies
GAN Ling  HUA Li  CHEN Shaojun 

Cite this article as GAN L, HUA L, CHEN S J. Research progress of radiomics in common gynecologic malignancies[J]. Chin J Magn Reson Imaging, 2024, 15(5): 227-234. DOI:10.12015/issn.1674-8034.2024.05.037.


[Abstract] Cervical cancer (CC), ovarian cancer (OC) and endometrial cancer (EC) are the three most common gynecologic malignancies, with high morbidity and mortality and increasing year by year. Early diagnosis and treatment are essential to improve survival. At present, the main diagnostic methods of gynecologic malignancies are imaging and pathological examination, but their sensitivity, accuracy and specificity are limited. The emerging radiomics technology transforms visual image information into deep features for quantitative research and quantitative assessment of lesions, which is conducive to improving the accuracy of disease evaluation. In recent years, more and more studies have found that radiomics based on computed tomography (CT), MRI and positron emission tomography/computed tomography (PET/CT) can perform pre-treatment assessment of patients with gynecologic malignancies non-invasively and accurately, and may guide clinical decision-making. In this paper, the basic concept and workflow of radiomics and its research progress in the diagnosis, differential diagnosis, pathological type, histological grade, lymph node metastasis (LNM), lymphovascular space invasion (LVSI), molecular expression, efficacy and prognosis prediction of common gynecologic malignancies were reviewed, and make a prospect for future research, in order to provide new ideas for optimizing medical decision-making and promoting the development of precision medicine.
[Keywords] cervical cancer;ovarian cancer;endometrial cancer;radiomics;magnetic resonance imaging

GAN Ling1, 2   HUA Li2   CHEN Shaojun2*  

1 Guangxi Medical University, Nanning 530000, China

2 Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Workers' Hospital, Liuzhou 545005, China

Corresponding author: CHEN S J, E-mail: chenshaojun388@163.com

Conflicts of interest   None.

Received  2024-01-25
Accepted  2024-04-30
DOI: 10.12015/issn.1674-8034.2024.05.037
Cite this article as GAN L, HUA L, CHEN S J. Research progress of radiomics in common gynecologic malignancies[J]. Chin J Magn Reson Imaging, 2024, 15(5): 227-234. DOI:10.12015/issn.1674-8034.2024.05.037.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
ZHENG R S, ZHANG S W, SUN K X, et al. Surveillance and Trends Cancer statistics in China, 2016[J]. Chin J Oncol, 2023, 45(3): 212-220. DOI: 10.3760/cma.j.cn112152-20220922-00647.
[3]
CROSBIE E J, KITSON S J, MCALPINE J N, et al. Endometrial cancer[J]. Lancet, 2022, 399(10333): 1412-1428. DOI: 10.1016/S0140-6736(22)00323-3.
[4]
SIEGEL R, MILLER K, WAGLE N S, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73: 17-48. DOI: 10.3322/caac.21763.
[5]
KASIUS J C, PIJNENBORG J M A, LINDEMANN K, et al. Risk stratification of endometrial cancer patients: FIGO stage, biomarkers and molecular classification[J/OL]. Cancers, 2021, 13(22): 5848 [2024-03-12]. https://doi.org/10.3390/cancers13225848. DOI: 10.3390/cancers13225848.
[6]
WRIGHT J D, MATSUO K, HUANG Y M, et al. Prognostic performance of the 2018 international federation of gynecology and obstetrics cervical cancer staging guidelines[J]. Obstet Gynecol, 2019, 134(1): 49-57. DOI: 10.1097/AOG.0000000000003311.
[7]
DALY M B, PAL T, BERRY M P, et al. Genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(1): 77-102. DOI: 10.6004/jnccn.2021.0001.
[8]
BODALAL Z, TREBESCHI S, NGUYEN-KIM T D L, et al. Radiogenomics: bridging imaging and genomics[J]. Abdom Radiol, 2019, 44(6): 1960-1984. DOI: 10.1007/s00261-019-02028-w.
[9]
JHA A K, MITHUN S, SHERKHANE U B, et al. Systematic review and meta-analysis of prediction models used in cervical cancer[J/OL]. Artif Intell Med, 2023, 139: 102549 [2024-03-20]. https://doi.org/10.1016/j.artmed.2023.102549. DOI: 10.1016/j.artmed.2023.102549.
[10]
HUANG M L, REN J, JIN Z Y, et al. Application of magnetic resonance imaging radiomics in endometrial cancer: a systematic review and meta-analysis[J]. Radiol Med, 2024, 129(3): 439-456. DOI: 10.1007/s11547-024-01765-3.
[11]
HUANG M L, REN J, JIN Z Y, et al. A systematic review and meta-analysis of CT and MRI radiomics in ovarian cancer: methodological issues and clinical utility[J/OL]. Insights Imaging, 2023, 14(1): 117 [2024-03-20]. https://doi.org/10.1186/s13244-023-01464-z. DOI: 10.1186/s13244-023-01464-z.
[12]
YIP S S F, AERTS H J W L. Applications and limitations of radiomics[J]. Phys Med Biol, 2016, 61(13): R150-R166. DOI: 10.1088/0031-9155/61/13/R150.
[13]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[14]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[15]
SCAPICCHIO C, GABELLONI M, BARUCCI A, et al. A deep look into radiomics[J]. Radiol Med, 2021, 126(10): 1296-1311. DOI: 10.1007/s11547-021-01389-x.
[16]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.
[17]
LIU Z Y, WANG S, DONG D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-1322. DOI: 10.7150/thno.30309.
[18]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[19]
GUAN Y, LI W F, JIANG Z R, et al. Whole-lesion apparent diffusion coefficient-based entropy-related parameters for characterizing cervical cancers: initial findings[J]. Acad Radiol, 2016, 23(12): 1559-1567. DOI: 10.1016/j.acra.2016.08.010.
[20]
FAN Z C, XIA Y W, ZHEN J P, et al. Machine learning to distinguish stage ⅠA cervical cancer from high-grade squamous intraepithelial lesion-based on MRI radiomics models[J]. Chin J Magn Reson Imag, 2021, 12(6): 38-43. DOI: 10.12015/issn.1674-8034.2021.06.008.
[21]
HU Q M, SHI J M, ZHANG A N, et al. Added value of radiomics analysis in MRI invisible early-stage cervical cancers[J/OL]. Br J Radiol, 2022, 95(1133): 20210986 [2023-12-21]. https://doi.org/10.1259/bjr.20210986. DOI: 10.1259/bjr.20210986.
[22]
SONG X L, REN J L, ZHAO D, et al. Radiomics derived from dynamic contrast-enhanced MRI pharmacokinetic protocol features: the value of precision diagnosis ovarian neoplasms[J]. Eur Radiol, 2021, 31(1): 368-378. DOI: 10.1007/s00330-020-07112-0.
[23]
HU Y M, WENG Q Y, XIA H H, et al. A radiomic nomogram based on arterial phase of CT for differential diagnosis of ovarian cancer[J]. Abdom Radiol, 2021, 46(6): 2384-2392. DOI: 10.1007/s00261-021-03120-w.
[24]
BI Q, WANG Y X, DENG Y C, et al. Different multiparametric MRI-based radiomics models for differentiating stage IA endometrial cancer from benign endometrial lesions: a multicenter study[J/OL]. Front Oncol, 2022, 12: 939930 [2023-12-24]. https://doi.org/10.3389/fonc.2022.939930. DOI: 10.3389/fonc.2022.939930.
[25]
SHEN W C, CHEN S W, LIANG J A, et al. 18]fluorodeoxyglucose positron emission tomography for the textural features of cervical cancer associated with lymph node metastasis and histological type[J]. Eur J Nucl Med Mol Imaging, 2017, 44(10): 1721-1731. DOI: 10.1007/s00259-017-3697-1.
[26]
WANG W, JIAO Y N, ZHANG L C, et al. Multiparametric MRI-based radiomics analysis: differentiation of subtypes of cervical cancer in the early stage[J]. Acta Radiol, 2022, 63(6): 847-856. DOI: 10.1177/02841851211014188.
[27]
WEI M X, FENG G N, WANG X Y, et al. Deep learning radiomics nomogram based on magnetic resonance imaging for differentiating type Ⅰ/Ⅱ epithelial ovarian cancer[J/OL]. Acad Radiol, 2023 [2023-12-23]. https://doi.org/10.1016/j.acra.2023.08.002. DOI: 10.1016/j.acra.2023.08.002.
[28]
ZHU H Y, AI Y, ZHANG J D, et al. Preoperative nomogram for differentiation of histological subtypes in ovarian cancer based on computer tomography radiomics[J/OL]. Front Oncol, 2021, 11: 642892 [2023-12-23]. https://doi.org/10.3389/fonc.2021.642892. DOI: 10.3389/fonc.2021.642892.
[29]
LIU X F, YAN B C, LI Y, et al. Radiomics nomogram in aiding preoperatively dilatation and curettage in differentiating type Ⅱ and type I endometrial cancer[J/OL]. Clin Radiol, 2023, 78(2): e29-e36 [2023-10-03]. https://doi.org/10.1016/j.crad.2022.08.139. DOI: 10.1016/j.crad.2022.08.139.
[30]
LIU Y, SONG T, DONG T F, et al. MRI-based radiomics analysis to evaluate the clinicopathological characteristics of cervical carcinoma: a multicenter study[J]. Acta Radiol, 2023, 64(1): 395-403. DOI: 10.1177/02841851211065142.
[31]
LI C P, WANG H F, CHEN Y L, et al. Nomograms of combining MRI multisequences radiomics and clinical factors for differentiating high-grade from low-grade serous ovarian carcinoma[J/OL]. Front Oncol, 2022, 12: 816982 [2023-12-23]. https://doi.org/10.3389/fonc.2022.816982. DOI: 10.3389/fonc.2022.816982.
[32]
YUE X N, HE X Y, HE S J, et al. Multiparametric magnetic resonance imaging-based radiomics nomogram for predicting tumor grade in endometrial cancer[J/OL]. Front Oncol, 2023, 13: 1081134 [2023-12-24]. https://doi.org/10.3389/fonc.2023.1081134. DOI: 10.3389/fonc.2023.1081134.
[33]
REYES-PÉREZ J A, VILLASEÑOR-NAVARRO Y, JIMÉNEZ DE LOS SANTOS M E, et al. The apparent diffusion coefficient (ADC) on 3-T MRI differentiates myometrial invasion depth and histological grade in patients with endometrial cancer[J]. Acta Radiol, 2020, 61(9): 1277-1286. DOI: 10.1177/0284185119898658.
[34]
YAN B C, LI Y, MA F H, et al. Radiologists with MRI-based radiomics aids to predict the pelvic lymph node metastasis in endometrial cancer: a multicenter study[J]. Eur Radiol, 2021, 31(1): 411-422. DOI: 10.1007/s00330-020-07099-8.
[35]
RAMANATHAN S, TIRUMANI S H, OJILI V. Nodal metastasis in gynecologic malignancies: update on imaging and management[J]. Clin Imaging, 2020, 59(2): 157-166. DOI: 10.1016/j.clinimag.2019.11.006.
[36]
XU X Q, KANG L Q, LIU F H. Progress of MRI in evaluation of pelvic lymph node metastasis from cervical cancer[J]. Chin J Magn Reson Imag, 2023, 14(10): 183-188. DOI: 10.12015/issn.1674-8034.2023.10.033.
[37]
LUCIA F, BOURBONNE V, PLEYERS C, et al. Multicentric development and evaluation of 18F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer[J]. Eur J Nucl Med Mol Imaging, 2023, 50(8): 2514-2528. DOI: 10.1007/s00259-023-06180-w.
[38]
ZHANG Z H, WAN X J, LEI X Y, et al. Intra- and peri-tumoral MRI radiomics features for preoperative lymph node metastasis prediction in early-stage cervical cancer[J/OL]. Insights Imaging, 2023, 14(1): 65 [2023-09-24]. https://doi.org/10.1186/s13244-023-01405-w. DOI: 10.1186/s13244-023-01405-w.
[39]
SONG J C, HU Q M, MA Z L, et al. Feasibility of T2WI-MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cervical cancer patients[J]. Eur Radiol, 2021, 31(9): 6938-6948. DOI: 10.1007/s00330-021-07735-x.
[40]
CHEN H Z, WANG X R, ZHAO F M, et al. The development and validation of a CT-based radiomics nomogram to preoperatively predict lymph node metastasis in high-grade serous ovarian cancer[J/OL]. Front Oncol, 2021, 11: 711648 [2023-09-30]. https://doi.org/10.3389/fonc.2021.711648. DOI: 10.3389/fonc.2021.711648.
[41]
YANG L Y, SIOW T Y, LIN Y C, et al. Computer-aided segmentation and machine learning of integrated clinical and diffusion-weighted imaging parameters for predicting lymph node metastasis in endometrial cancer[J/OL]. Cancers, 2021, 13(6): 1406 [2023-12-24]. https://doi.org/10.3390/cancers13061406. DOI: 10.3390/cancers13061406.
[42]
DU W, WANG Y, LI D D, et al. Preoperative prediction of lymphovascular space invasion in cervical cancer with radiomics-based nomogram[J/OL]. Front Oncol, 2021, 11: 637794 [2023-12-21]. https://doi.org/10.3389/fonc.2021.637794. DOI: 10.3389/fonc.2021.637794.
[43]
JIANG X R, LI J X, KAN Y Y, et al. MRI based radiomics approach with deep learning for prediction of vessel invasion in early-stage cervical cancer[J]. IEEE/ACM Trans Comput Biol Bioinform, 2021, 18(3): 995-1002. DOI: 10.1109/TCBB.2019.2963867.
[44]
WANG S X, LIU X W, WU Y, et al. Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study[J/OL]. Front Oncol, 2023, 13: 1252074 [2023-12-21]. https://doi.org/10.3389/fonc.2023.1252074. DOI: 10.3389/fonc.2023.1252074.
[45]
LIU X F, YAN B C, LI Y, et al. Radiomics feature as a preoperative predictive of lymphovascular invasion in early-stage endometrial cancer: a multicenter study[J/OL]. Front Oncol, 2022, 12: 966529 [2023-10-03]. https://doi.org/10.3389/fonc.2022.966529. DOI: 10.3389/fonc.2022.966529.
[46]
PENG Y J, LIU X W, TANG X, et al. Preoperative predicting lymphov-ascular space invasion in endometrial carcinoma by nomogram based on mpMRI radiomics[J]. Chin J Magn Reson Imag, 2022, 13(7): 61-67. DOI: 10.12015/issn.1674-8034.2022.07.011.
[47]
DENG X J, LIU M L, SUN J Q, et al. Feasibility of MRI-based radiomics features for predicting lymph node metastases and VEGF expression in cervical cancer[J/OL]. Eur J Radiol, 2021, 134: 109429 [2023-04-03]. https://doi.org/10.1016/j.ejrad.2020.109429. DOI: 10.1016/j.ejrad.2020.109429.
[48]
LI X R, JIN J J, YU Y, et al. PET-CT radiomics by integrating primary tumor and peritumoral areas predicts E-cadherin expression and correlates with pelvic lymph node metastasis in early-stage cervical cancer[J]. Eur Radiol, 2021, 31(8): 5967-5979. DOI: 10.1007/s00330-021-07690-7.
[49]
CAO Y W, JIANG Y, SONG J C, et al. CT-based radiomics nomogram analysis for assessing BRCA mutation status in patients with high-grade serous ovarian cancer[J]. Acta Radiol, 2023, 64(10): 2802-2811. DOI: 10.1177/02841851231188915.
[50]
WAN S, ZHOU T F, CHE R H, et al. CT-based machine learning radiomics predicts CCR5 expression level and survival in ovarian cancer[J/OL]. J Ovarian Res, 2023, 16(1): 1 [2023-09-26]. https://doi.org/10.1186/s13048-022-01089-8. DOI: 10.1186/s13048-022-01089-8.
[51]
GU R, TAN S Y, XU Y P, et al. CT radiomics prediction of CXCL9 expression and survival in ovarian cancer[J/OL]. J Ovarian Res, 2023, 16(1): 180 [2023-12-23]. https://doi.org/10.1186/s13048-023-01248-5. DOI: 10.1186/s13048-023-01248-5.
[52]
ZHAN F, HE L D, YU Y L, et al. A multimodal radiomic machine learning approach to predict the LCK expression and clinical prognosis in high-grade serous ovarian cancer[J/OL]. Sci Rep, 2023, 13(1): 16397 [2023-12-23]. https://doi.org/10.1038/s41598-023-43543-7. DOI: 10.1038/s41598-023-43543-7.
[53]
SONG X L, LUO H J, REN J L, et al. Multisequence magnetic resonance imaging-based radiomics models for the prediction of microsatellite instability in endometrial cancer[J]. Radiol Med, 2023, 128(2): 242-251. DOI: 10.1007/s11547-023-01590-0.
[54]
WANG X H, WU K, LI X R, et al. Additional value of PET/CT-based radiomics to metabolic parameters in diagnosing lynch syndrome and predicting PD1 expression in endometrial carcinoma[J/OL]. Front Oncol, 2021, 11: 595430 [2023-12-24]. https://doi.org/10.3389/fonc.2021.595430. DOI: 10.3389/fonc.2021.595430.
[55]
WANG X H, XU C, GRZEGORZEK M, et al. Habitat radiomics analysis of pet/ct imaging in high-grade serous ovarian cancer: application to Ki-67 status and progression-free survival[J/OL]. Front Physiol, 2022, 13: 948767 [2023-09-26]. https://doi.org/10.3389/fphys.2022.948767. DOI: 10.3389/fphys.2022.948767.
[56]
FANG M J, KAN Y Y, DONG D, et al. Multi-habitat based radiomics for the prediction of treatment response to concurrent chemotherapy and radiation therapy in locally advanced cervical cancer[J/OL]. Front Oncol, 2020, 10: 563 [2023-09-24]. https://doi.org/10.3389/fonc.2020.00563. DOI: 10.3389/fonc.2020.00563.
[57]
XIN Z H, YAN W Y, FENG Y B, et al. An MRI-based machine learning radiomics can predict short-term response to neoadjuvant chemotherapy in patients with cervical squamous cell carcinoma: a multicenter study[J]. Cancer Med, 2023, 12(19): 19383-19393. DOI: 10.1002/cam4.6525.
[58]
RUNDO L, BEER L, SANCHEZ L E, et al. Clinically interpretable radiomics-based prediction of histopathologic response to neoadjuvant chemotherapy in high-grade serous ovarian carcinoma[J/OL]. Front Oncol, 2022, 12: 868265 [2023-12-23]. https://doi.org/10.3389/fonc.2022.868265. DOI: 10.3389/fonc.2022.868265.
[59]
LI H M, CAI S Q, DENG L, et al. Prediction of platinum resistance for advanced high-grade serous ovarian carcinoma using MRI-based radiomics nomogram[J]. Eur Radiol, 2023, 33(8): 5298-5308. DOI: 10.1007/s00330-023-09552-w.
[60]
YAN B C, MA X L, LI Y, et al. MRI-based radiomics nomogram for selecting ovarian preservation treatment in patients with early-stage endometrial cancer[J/OL]. Front Oncol, 2021, 11: 730281 [2023-12-24]. https://doi.org/10.3389/fonc.2021.730281. DOI: 10.3389/fonc.2021.730281.
[61]
AUTORINO R, GUI B, PANZA G, et al. Radiomics-based prediction of two-year clinical outcome in locally advanced cervical cancer patients undergoing neoadjuvant chemoradiotherapy[J]. Radiol Med, 2022, 127(5): 498-506. DOI: 10.1007/s11547-022-01482-9.
[62]
LALISCIA C, GADDUCCI A, MATTIONI R, et al. MRI-based radiomics: promise for locally advanced cervical cancer treated with a tailored integrated therapeutic approach[J]. Tumori, 2022, 108(4): 376-385. DOI: 10.1177/03008916211014274.
[63]
WEI G C, JIANG P, TANG Z C, et al. MRI radiomics in overall survival prediction of local advanced cervical cancer patients tread by adjuvant chemotherapy following concurrent chemoradiotherapy or concurrent chemoradiotherapy alone[J]. Magn Reson Imaging, 2022, 91: 81-90. DOI: 10.1016/j.mri.2022.05.019.
[64]
LI H M, GONG J, LI R M, et al. Development of MRI-based radiomics model to predict the risk of recurrence in patients with advanced high-grade serous ovarian carcinoma[J]. AJR Am J Roentgenol, 2021, 217(3): 664-675. DOI: 10.2214/AJR.20.23195.
[65]
LIU D F, YANG L S, DU D, et al. Multi-parameter MR radiomics based model to predict 5-year progression-free survival in endometrial cancer[J/OL]. Front Oncol, 2022, 12: 813069 [2023-12-24]. https://doi.org/10.3389/fonc.2022.813069. DOI: 10.3389/fonc.2022.813069.
[66]
LIN Z J, WANG T, LI Q, et al. Development and validation of MRI-based radiomics model to predict recurrence risk in patients with endometrial cancer: a multicenter study[J]. Eur Radiol, 2023, 33(8): 5814-5824. DOI: 10.1007/s00330-023-09685-y.

PREV Research progress of radiomics and deep learning in prostate cancer
NEXT Guideline for diagnosis and treatment of primary liver cancer (2024 edition)
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn