Share:
Share this content in WeChat
X
Clinical Article
Diffusion kurtosis imaging reveals microstructural abnormalities in cerebral white matter fiber tracts in children with global developmental delay
ZHANG Xiaoxue  ZHAO Xin  SHEN Yanyong  CHENG Meiying  WANG Changhao  YANG Zhexuan  FENG Zhanqi  ZHANG Xiaoan 

Cite this article as: ZHANG X X, ZHAO X, SHEN Y Y, et al. Diffusion kurtosis imaging reveals microstructural abnormalities in cerebral white matter fiber tracts in children with global developmental delay[J]. Chin J Magn Reson Imaging, 2024, 15(6): 19-23, 30. DOI:10.12015/issn.1674-8034.2024.06.002.


[Abstract] Objective Diffusion kurtosis imaging (DKI) was employed to evaluate microstructural changes in the white matter fiber tracts of the brain in children with global developmental delay (GDD).Materials and Methods This prospective study included 37 children with GDD in the experimental group and 32 age- and gender-matched healthy children in the control group. All participants underwent DKI sequence scanning, and diffusion tensor and kurtosis tensor parameters were obtained following post-processing. The parameters were compared between the two groups using tract-based spatial statistics (TBSS). Spearman correlation analysis was conducted between the parameter values within the fiber bundles showing significant intergroup differences and the neurodevelopmental scores of children with GDD.Results Compared to the control group, the mean diffusivity (MD) of the right corticospinal tract and right anterior thalamic radiation were significantly increased in the GDD group (all P<0.05); the radial diffusivity (RD) of the bilateral anterior thalamic radiation, bilateral corticospinal tract, and right superior longitudinal fasciculus were also significantly increased (all P<0.05). Additionally, the radial kurtosis (RK) in the GDD group was significantly decreased (all P<0.05), including the bilateral anterior thalamic radiations, bilateral corticospinal tracts, bilateral inferior fronto-occipital fasciculi, bilateral superior longitudinal fasciculi, bilateral inferior longitudinal fasciculi, forceps minor, left uncinate fasciculus, and right cingulum. Correlation analysis revealed that the average RK values of the left inferior longitudinal fasciculus and left uncinate fasciculus were positively correlated with adaptive behavior scores (r=0.349, 0.486, respectively; all P<0.05); the average RK value of the left uncinate fasciculus was positively correlated with fine motor and personal-social behavior scores (r=0.365, 0.590, respectively; all P<0.05).Conclusions The DKI technique can detect abnormalities in the microstructure of the white matter fiber bundles in children with GDD, providing useful insights into the potential pathophysiological mechanisms of GDD.
[Keywords] global developmental delay;diffusion kurtosis imaging;magnetic resonance imaging;tract-based spatial statistics;white matter;children

ZHANG Xiaoxue1, 2   ZHAO Xin1, 2   SHEN Yanyong1, 2   CHENG Meiying1, 2   WANG Changhao1, 2   YANG Zhexuan1, 2   FENG Zhanqi1, 2   ZHANG Xiaoan1, 2*  

1 Department of Medical Imaging, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

2 Henan International Joint Laboratory of Neuroimaging, Zhengzhou 450052, China

Corresponding author: ZHANG X A, E-mail: zxa@zzu.edu.cn

Conflicts of interest   None.

Received  2023-12-20
Accepted  2024-06-03
DOI: 10.12015/issn.1674-8034.2024.06.002
Cite this article as: ZHANG X X, ZHAO X, SHEN Y Y, et al. Diffusion kurtosis imaging reveals microstructural abnormalities in cerebral white matter fiber tracts in children with global developmental delay[J]. Chin J Magn Reson Imaging, 2024, 15(6): 19-23, 30. DOI:10.12015/issn.1674-8034.2024.06.002.

[1]
ALMUTIRI R, MALTA M, SHEVELL M I, et al. Evaluation of individuals with non-syndromic global developmental delay and intellectual disability[J/OL]. Children (Basel), 2023, 10(3): 414 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/36979972/. DOI: 10.3390/children10030414.
[2]
TADDEI M, BULGHERONI S, TOFFALINI E, et al. Developmental profiles of young children with autism spectrum disorder and global developmental delay: A study with the Griffiths III scales[J]. Autism Res, 2023, 16(7): 1344-1359. DOI: 10.1002/aur.2953.
[3]
JUNEJA M, GUPTA A, SAIRAM S, et al. Diagnosis and management of global development delay: Consensus guidelines of growth, development and behavioral pediatrics chapter, neurology chapter and neurodevelopment pediatrics chapter of the indian academy of pediatrics[J]. Indian Pediatrics, 2022, 59(5): 401-415. DOI: 10.1007/s13312-022-2522-5.
[4]
DUNCAN A R, VITOBELLO A, COLLINS S C, et al. Heterozygous variants in KDM4B lead to global developmental delay and neuroanatomical defects[J]. Am J Hum Genet, 2020, 107(6): 1170-1177. DOI: 10.1016/j.ajhg.2020.11.001.
[5]
SHAN L, FENG J Y, WANG T T, et al. Prevalence and developmental profiles of autism spectrum disorders in children with global developmental delay[J/OL]. Front Psychiatry, 2021, 12: 794238 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/35115968/. DOI: 10.3389/fpsyt.2021.794238.
[6]
JENSEN J H, HELPERN J A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biomed, 2010, 23(7): 698-710. DOI: 10.1002/nbm.1518.
[7]
RAJ S, VYAS S, MODI M, et al. Comparative evaluation of diffusion kurtosis imaging and diffusion tensor imaging in detecting cerebral microstructural changes in Alzheimer disease[J/OL]. Acad Radiol, 2022, 29Suppl 3: S63-S70 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/33612351/. DOI: 10.1016/j.acra.2021.01.018.
[8]
WELTON T, HARTONO S, SHIH Y C, et al. Microstructure of brain nuclei in early Parkinson's disease: Longitudinal diffusion kurtosis imaging[J]. J Parkinsons Dis, 2023, 13(2): 233-242. DOI: 10.3233/JPD-225095.
[9]
CHU X, WU P, YAN H, et al. Comparison of brain microstructure alterations on diffusion kurtosis imaging among Alzheimer's disease, mild cognitive impairment, and cognitively normal individuals[J/OL]. Front Aging Neurosci, 2022, 14: 919143 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/36034135/. DOI: 10.3389/fnagi.2022.919143.
[10]
LUO D, PENG Y, ZHU Q, et al. U-fiber diffusion kurtosis and susceptibility characteristics in relapsing-remitting multiple sclerosis may be related to cognitive deficits and neurodegeneration[J/OL]. Eur Radiol, 2023 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/37658142/. DOI: 10.1007/s00330-023-10114-3.
[11]
FILIPPI C G, LIN D D, TSIOURIS A J, et al. Diffusion-tensor MR imaging in children with developmental delay: preliminary findings[J]. Radiology, 2003, 229(1): 44-50. DOI: 10.1148/radiol.2291020049.
[12]
VERMA A, SAGAR N C, KUMAR A, et al. Diagnostic value of diffusion tensor imaging derived metrics as biomarkers of cerebral changes in developmental delay[J]. Indian J Radiol Imaging, 2015, 25(4): 415-420. DOI: 10.4103/0971-3026.169457.
[13]
RAMLI N, YAP A, MURIDAN R, et al. Microstructural abnormalities found in uncinate fasciculus and superior cerebellar tracts in children with global developmental delay: a feasibility study[J/OL]. Clin Radiol, 2020, 75(1): 77.e15-77.e22 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/31668796/. DOI: 10.1016/j.crad.2019.09.134.
[14]
SMITH S M, JENKINSON M, JOHANSEN-BERG H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data[J]. Neuroimage, 2006, 31(4): 1487-1505. DOI: 10.1016/j.neuroimage.2006.02.024.
[15]
ASSOCIATION A P. Statistical manual of mental disorders fifth edition text revision (DSM-5-TR)[J/OL]. American Psychiatric AssociationPublishing: Washington, DC, USA, 2022 [2023-12-18]. https://dsm.psychiatryonline.org/doi/book/10.1176/appi.books.9780890425787. DOI: 10.1176/appi.books.9780890425787.
[16]
WU L, WANG J, WANG L, et al. Physical, language, neurodevelopment and phenotype-genotype correlation of Chinese patients with Mowat-Wilson syndrome[J/OL]. Front Genet, 2022, 13: 1016677 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/36406119/. DOI: 10.3389/fgene.2022.1016677.
[17]
SIDDHARTHA D, JOSHUA B T, KATHRYN E T, et al. PyDesigner: A Pythonic Implementation of the DESIGNER Pipeline for Diffusion Tensor and Diffusional Kurtosis Imaging[J/OL]. bioRxiv, 2021: 2021.2010.2020.465189 [2023-12-18]. https://www.biorxiv.org/content/10.1101/2021.10.20.465189v1. DOI: 10.1101/2021.10.20.465189.
[18]
ZHANG M, HU X, JIAO J, et al. Brain white matter microstructure abnormalities in children with optimal outcome from autism: a four-year follow-up study[J/OL]. Sci Rep, 2022, 12(1): 20151 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/36418886/. DOI: 10.1038/s41598-022-21085-8.
[19]
HUNG Y, DALLENBACH N T, GREEN A, et al. Distinct and shared white matter abnormalities when ADHD is comorbid with ASD: A preliminary diffusion tensor imaging study[J/OL]. Psychiatry Res, 2023, 320: 115039 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/36640678/. DOI: 10.1016/j.psychres.2022.115039.
[20]
GIANNI C, PIERVINCENZI C, BELVISI D, et al. Cortico-subcortical white matter bundle changes in cervical dystonia and blepharospasm[J/OL]. Biomedicines, 2023, 11(3): 753 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/36979732/. DOI: 10.3390/biomedicines11030753.
[21]
MEI Y, WANG W, QIU D, et al. Micro-structural white matter abnormalities in new daily persistent headache: a DTI study using TBSS analysis[J/OL]. J Headache Pain, 2023, 24(1): 80 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/37394419/. DOI: 10.1186/s10194-023-01620-2.
[22]
HUANG Z X, LI Q L, YANG Q. Study on the characteristics and influencing factors of diffusion tensor imaging of white matter in infants with general developmental delay[J]. J Brain Nerv Dis, 2022, 30(9): 568-572.
[23]
MCKENNA F, MILES L, DONALDSON J, et al. Diffusion kurtosis imaging of gray matter in young adults with autism spectrum disorder[J/OL]. Sci Rep, 2020, 10(1): 21465 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/33293640/. DOI: 10.1038/s41598-020-78486-w.
[24]
ANAND T, ISHAQUE A, TA D, et al. Characterization of white matter alterations using diffusion kurtosis imaging in patients with amyotrophic lateral sclerosis[J/OL]. Brain Behav, 2023, 13(7): e3102 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/37279166/. DOI: 10.1002/brb3.3102.
[25]
SHIN J, ROWLEY J, CHOWDHURY R, et al. Inferior longitudinal fasciculus' role in visual processing and language comprehension: A combined MEG-DTI study[J/OL]. Front Neurosci, 2019, 13: 875 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/31507359/. DOI: 10.3389/fnins.2019.00875.
[26]
DEL TUFO S N, EARLE F S, CUTTING L E. The impact of expressive language development and the left inferior longitudinal fasciculus on listening and reading comprehension[J/OL]. J Neurodev Disord, 2019, 11(1): 37 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/31838999/. DOI: 10.1186/s11689-019-9296-7.
[27]
CAMINS A, NAVAL-BAUDIN P, MAJOS C, et al. Inferior fronto-occipital fascicle displacement in temporoinsular gliomas using diffusion tensor imaging[J]. J Neuroimaging, 2022, 32(4): 638-646. DOI: 10.1111/jon.12992.
[28]
SUNDARAM S K, SIVASWAMY L, MAKKI M I, et al. Absence of arcuate fasciculus in children with global developmental delay of unknown etiology: a diffusion tensor imaging study[J]. J Pediatr, 2008, 152(2): 250-255. DOI: 10.1016/j.jpeds.2007.06.037.
[29]
XU E, NGUYEN L, HU R, et al. The uncinate fasciculus in individuals with and at risk for bipolar disorder: A meta-analysis[J]. J Affect Disord, 2022, 297: 208-216. DOI: 10.1016/j.jad.2021.10.045.
[30]
OLIVE G, PENALOZA C, VAQUERO L, et al. The right uncinate fasciculus supports verbal short-term memory in aphasia[J]. Brain Struct Funct, 2023, 228(3-4): 875-893. DOI: 10.1007/s00429-023-02628-9.
[31]
CHEN H, JIANG L, ZHANG H, et al. Corticospinal tract changes in acute brainstem ischemic stroke patients: A diffusion kurtosis imaging study[J]. Neurol India, 2018, 66(3): 726-732. DOI: 10.4103/0028-3886.232281.
[32]
YU X, JIAERKEN Y, WANG S, et al. Changes in the corticospinal tract beyond the ischemic lesion following acute hemispheric stroke: A diffusion kurtosis imaging study[J]. J Magn Reson Imaging, 2020, 52(2): 512-519. DOI: 10.1002/jmri.27066.
[33]
CROTTY J E, MARTIN-HERZ S P, SCHARF R J. Cognitive development[J]. Pediatr Rev, 2023, 44(2): 58-67. DOI: 10.1542/pir.2021-005069.
[34]
ZHANG Y, LIN L, FENG M, et al. The mean diffusivity of forceps minor is useful to distinguish amnestic mild cognitive impairment from mild cognitive impairment caused by cerebral small vessel disease[J/OL]. Front Hum Neurosci, 2022, 16: 1010076 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/36438640/. DOI: 10.3389/fnhum.2022.1010076.
[35]
BUBB E J, METZLER-BADDELEY C, AGGLETON J P. The cingulum bundle: Anatomy, function, and dysfunction[J]. Neurosci Biobehav Rev, 2018, 92: 104-127. DOI: 10.1016/j.neubiorev.2018.05.008.
[36]
LI Z, WANG W, SANG F, et al. White matter changes underlie hypertension-related cognitive decline in older adults[J/OL]. Neuroimage Clin, 2023, 38: 103389 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/37004321/. DOI: 10.1016/j.nicl.2023.103389.
[37]
COENEN M, KUIJF H J, HUENGES WAJER I M C, et al. Strategic white matter hyperintensity locations for cognitive impairment: A multicenter lesion-symptom mapping study in 3525 memory clinic patients[J]. Alzheimers Dement, 2023, 19(6): 2420-2432. DOI: 10.1002/alz.12827.

PREV Guideline for diagnosis and treatment of primary liver cancer (2024 edition)
NEXT A study on the brain functional network of adult epilepsy comorbidity depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn