Share:
Share this content in WeChat
X
Clinical Article
A study on the brain functional network of adult epilepsy comorbidity depression
PAN Hong  LIU Chaorong  HU Aili  HUANG Biao  SU Qiyan  ZHOU Xiayi  HU Chongyu 

Cite this article as: PAN H, LIU C R, HU A L, et al. A study on the brain functional network of adult epilepsy comorbidity depression[J]. Chin J Magn Reson Imaging, 2024, 15(6): 24-30. DOI:10.12015/issn.1674-8034.2024.06.003.


[Abstract] Objective To study the topology of brain functional networks in epilepsy comorbidity depression using resting-state functional magnetic resonance imaging (rs-fMRI) combined with graph theory analysis.Materials and Methods Fifty-five included epilepsy patients underwent rs-fMRI examination and 17 item version of Hamilton Depression Rating Scale (HAMD) assessment, and were divided into depression and non-depression groups based on HAMD scores, with 30 cases in the depression group (ED group) and 25 cases in the non-depression group (E group) finally included. Based on the brain network analysis method of rs-fMRI combined with graph theory, the brain functional connectivity network was constructed, the global and node indexes of the brain network topology were calculated, and analyze whether there are abnormalities in the topological properties of the brain networks in the ED and E groups, and whether there is a correlation between abnormal indicators and HAMD scores.Results The clustering coefficient (Cp) and standardized characteristic path length (lambda, λ) decreased in patients in ED group, and the difference was statistically significant (P<0.05). At the nodal level, the brain regions with decreased centrality included the left cuneus and left supraoccipital gyrus; the brain regions with increased centrality were located in the orbital part of the right middle frontal gyrus, and the differences were all statistically significant (P<0.05, FDR corrected). Global attribute clustering coefficients (r=-0.349, P=0.012), node clustering coefficients (NCp) of the left superior occipital gyrus (r=-0.382, P=0.006), NCp of the left cuneus (r=-0.477, P<0.001), and nodal local efficiency (NLe) of the left superior occipital gyrus nodes (r=-0.351, P=0.011) were negatively correlated with HAMD scores, and NLe of the orbital node of the right middle frontal gyrus (r=0.409, P=0.003) was positively correlated with HAMD scores.Conclusions In this study, we found that patients with epilepsy with/without depression have small-world network properties, the abnormal changes in some global and nodal indicators of its brain functional network provide imaging evidence for a better understanding of the occurrence and development of comorbidities and depression in epilepsy.
[Keywords] epilepsy;depression;resting-state functional magnetic resonance imaging;magnetic resonance imaging;functional brain network;graph theory analysis

PAN Hong1   LIU Chaorong1   HU Aili2   HUANG Biao1   SU Qiyan1   ZHOU Xiayi1   HU Chongyu1*  

1 Department of Neurology, Hunan Provincial People's Hospital (First Affiliated Hospital of Hunan Normal University), Changsha 414000, China

2 Department of Neurology, Shaoyang Central Hospital, Shaoyang 422000, China

Corresponding author: HU C Y, E-mail: 44458220@qq.com

Conflicts of interest   None.

Received  2023-12-16
Accepted  2024-05-11
DOI: 10.12015/issn.1674-8034.2024.06.003
Cite this article as: PAN H, LIU C R, HU A L, et al. A study on the brain functional network of adult epilepsy comorbidity depression[J]. Chin J Magn Reson Imaging, 2024, 15(6): 24-30. DOI:10.12015/issn.1674-8034.2024.06.003.

[1]
MIZIAK B, CZUCZWAR S J. Approaches for the discovery of drugs that target K Na 1.1 channels in KCNT1-associated epilepsy[J]. Expert Opin Drug Discov, 2022, 17(12): 1313-1328. DOI: 10.1080/17460441.2023.2150164.
[2]
DRUZHKOVA T A, YAKOVLEV A A, RIDER F K, et al. Elevated serum cortisol levels in patients with focal epilepsy, depression, and comorbid epilepsy and depression[J/OL]. Int J Mol Sci, 2022, 23(18): 10414 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/36142325/. DOI: 10.3390/ijms231810414.
[3]
WANG J J, ZHAO W, SUN X J. Research progress in functional magnetic resonance imaging of primary epilepsy[J]. Chin J Med Imaging, 2016, 24(9): 714-716, 720. DOI: 10.3969/j.issn.1005-5185.2016.09.021.
[4]
LIU S J, ZHANG T J, LIU H, et al. Impact of brain functional network properties on intelligence in children and adolescents with focal epilepsy: A resting-state MRI study[J]. Acad Radiol, 2021, 28(2): 225-232 . DOI: 10.1016/j.acra.2020.01.004.
[5]
GONG W R, LV W C, CUI Y. Advances in multimodal MRI-based study of brain networks in patients with carotid artery stenosis[J]. Chin J Radiol Health, 2023, 32(1): 70-74. DOI: 10.13491/j.issn.1004-714X.2023.01.015.
[6]
GOODMAN A M, SZAFLARSKI J P. Recent advances in neuroimaging of epilepsy[J]. Neurotherapeutics, 2021, 18(2): 811-826. DOI: 10.1007/s13311-021-01049-y.
[7]
YANG J, TAO H, SUN F, et al. The anatomical networks based on probabilistic structurally connectivity in bipolar disorder across mania, depression, and euthymic states[J]. J Affect Disord, 2023, 329: 42-49. DOI: 10.1016/j.jad.2023.02.109.
[8]
REPPLE J, GRUBER M, MAURITZ M, et al. Shared and specific patterns of structural brain connectivity across affective and psychotic disorders[J]. Biol Psychiatry, 2023, 93(2): 178-186. DOI: 10.1016/j.biopsych.2022.05.031.
[9]
TENG X, GUO C, LEI X, et al. Comparison of brain network between schizophrenia and bipolar disorder: A multimodal MRI analysis of comparative studies[J]. J Affect Disord, 2023, 327: 197-206. DOI: 10.1016/j.jad.2023.01.116.
[10]
LI X, LI H, CAO L, et al. Application of graph theory across multiple frequency bands in drug-naïve obsessive-compulsive disorder with no comorbidity[J]. Psychiatr Res, 2022, 150: 272-278. DOI: 10.1016/j.jpsychires.2022.03.041.
[11]
LEE D A, LEE H J, KIM S E, et al. Brain networks and epilepsy development in patients with Alzheimer disease[J/OL]. Brain Behav, 2023, 13(8): e3152 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/37416994/. DOI: 10.1002/brb3.3152.
[12]
ZHANG S, ZHAO F, YANG X, et al. Multiparametric mapping of white matter reorganizations in patients with frontal glioma-related epilepsy[J]. CNS Neurosci Ther, 2023, 29(8): 2366-2376. DOI: 10.1111/cns.14322.
[13]
FANG S, LI L, WENG S, et al. Altering patterns of sensorimotor network in patients with different pathological diagnoses and glioma-related epilepsy under the latest glioma classification of the central nervous system[J]. CNS Neurosci Ther, 2023, 29(5): 1368-1378. DOI: 10.1111/cns.14109.
[14]
WANG K, XIE F, LIU C, et al. Shared functional network abnormality in patients with temporal lobe epilepsy and their siblings[J]. CNS Neurosci Ther, 2023, 29(4): 1109-1119. DOI: 10.1111/cns.14087.
[15]
DU J, ZHOU X, LIANG Y, et al. Levodopa responsiveness and white matter alterations in Parkinson's disease: A DTI-based study and brain network analysis: A cross-sectional study[J/OL]. Brain Behav, 2022, 12(12): e2825 [2023-12-16].https://pubmed.ncbi.nlm.nih.gov/36423257/. DOI: 10.1002/brb3.2825.
[16]
LI Z, HOU X, LU Y, et al. Study of brain network alternations in non-lesional epilepsy patients by BOLD-fMRI[J/OL]. Front Neurosci, 2022, 16: 1031163 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/36741055/. DOI: 10.3389/fnins.2022.1031163.
[17]
WANG J, WANG X, XIA M, et al. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics[J/OL]. Front Hum Neurosci, 2015, 9: 386 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/26175682/. DOI: 10.3389/fnhum.2015.00386.
[18]
GUO L, LU H, HUANG F R, et al. Study of dynamic characteristics of scale-free spiking neural networks based on synaptic plasticity[J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2019, 36(6): 902-910. DOI: 10.7507/1001-5515.201807027.
[19]
WYKES R C, KHOO H M, CACIAGLI L, et al. WONOEP appraisal: Network concept from an imaging perspective[J]. Epilepsia, 2019, 60(7): 1293-1305. DOI: 10.1111/epi.16067.
[20]
HE Y, CHEN Z J, EVANS A C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI[J]. Cereb Cortex, 2007, 17(10): 2407-2419. DOI: 10.1093/cercor/bhl149.
[21]
ZHANG T, ZHANG Y, REN J, et al. Aberrant basal ganglia-thalamo-cortical network topology in juvenile absence epilepsy: A resting-state EEG-fMRI study[J]. Seizure, 2021, 84: 78-83. DOI: 10.1016/j.seizure.2020.11.015.
[22]
LAN X Q, LI X B, HUANG M H, et al. Study on changes of brain network topology in patients with post-stroke depression[J]. J Clin Neurol, 2017, 30(5): 321-324. DOI: 1004-1648(2017)05-0321-04.
[23]
TAN W, OUYANG X, HUANG D, et al. Disrupted intrinsic functional brain network in patients with late-life depression: Evidence from a multi-site dataset[J]. J Affect Disord, 2023, 323: 631-639. DOI: 10.1016/j.jad.2022.12.019.
[24]
PAN F, XU Y, ZHOU W, et al. Disrupted intrinsic functional connectivity of the cognitive control network underlies disease severity and executive dysfunction in first-episode, treatment-naive adolescent depression[J]. J Affect Disord, 2020, 264: 455-463. DOI: 10.1016/j.jad.2019.11.076.
[25]
CAO J H, ZHAO Z H, SONG P, et al. Topological properties of brain functional networks in adolescen ts with major depressive disorder[J]. Chin J Neuromed, 2023, 22(6): 559-565. DOI: 10.3760/cma.j.cn115354-20230223-00093.
[26]
ZHANG F F, PENG W, SWEENEY J A, et al. Brain structure alterations in depression: Psychoradiological evidence[J]. CNS Neurosci Ther, 2018, 24(11): 994-1003. DOI: 10.1111/cns.12835.
[27]
LIU C, LI L, PAN W, et al. Altered topological properties of functional brain networks in patients with first episode, late-life depression before and after antidepressant treatment[J/OL]. Front Aging Neurosci, 2023, 15: 1107320 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/36949772/. DOI: 10.3389/fnagi.2023.1107320.
[28]
LIU J, REN L, WOMER F Y, et al. Alterations in amplitude of low frequency fluctuation in treatment‐naïve major depressive disorder measured with resting‐state fMRI[J]. Hum Brain Mapp, 2014, 35(10): 4979-4988. DOI: 10.1002/hbm.22526.
[29]
DOTSON V M, BOGOIAN H R, GRADONE A M, et al. Subthreshold depressive symptoms relate to cuneus structure: thickness asymmetry and sex differences[J]. J Psychiatr Res, 2022, 145: 144-147. DOI: 10.1016/j.jpsychires.2021.12.013.
[30]
FISCHER A S, ELLWOOD-LOWE M E, COLICH N L, et al. Reward-circuit biomarkers of risk and resilience in adolescent depression[J]. J Affect Disord, 2019, 246: 902-909. DOI: 10.1016/J.Jad.2018.12.104.
[31]
DE KWAASTENIET B P, RIVE M M, RUHÉ H G, et al. Decreased resting-state connectivity between neurocognitive networks in treatment resistant depression[J/OL]. Front Psychiatry, 2015, 6: 125963 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/25784881/. DOI: 10.3389/fpsyt.2015.00028.
[32]
KUKOLJA J, GÖRECI D Y, ONUR Ö A, et al. Resting-state fMRI evidence for early episodic memory consolidation: effects of age[J]. Neurobiol Aging, 2016, 45: 197-211. DOI: 10.1016/j.neurobiolaging.2016.06.004.
[33]
ZHANG Z, LI G, SONG Z, et al. Relationship among number of close friends, subclinical geriatric depression, and subjective cognitive decline based on regional homogeneity of functional magnetic resonance imaging data[J/OL]. Front Aging Neurosci, 2022, 14: 978611 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/36212042/. DOI: 10.3389/fnagi.2022.978611.
[34]
PHAN K L, WAGER T, TAYLOR S F, et al. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI[J]. Neuroimage, 2002, 16(2): 331-348. DOI: 10.1006/nimg.2002.1087.
[35]
ZHUANG N, JIANG L, YAN B, et al. Neural mechanism of affective perception: Evidence from phase and causality analysis in the cerebral cortex[J]. Neuroscience, 2021, 461: 44-56. DOI: 10.1016/j.neuroscience.2021.02.012.
[36]
YAO Z, ZOU Y, ZHENG W, et al. Structural alterations of the brain preceded functional alterations in major depressive disorder patients: Evidence from multimodal connectivity[J]. J Affect Disord, 2019, 253: 107-117. DOI: 10.1016/j.jad.2019.04.064.
[37]
ZHANG J J, LIANG J J, WANG X R, et al. Amplitude of low-frequency fluctuation and regional homoge neity of rs-fMRI in patients with unilateral sudden sensorineural hearing loss[J]. Chin J Magn Reson Imaging, 2023, 14(1): 48-53. DOI: 10.12015/issn.1674-8034.2023.01.009.
[38]
ZHANG H Q, MA L. Research progress on sleep disorders and cognitive impairment in epilepsy patients[J]. J Apoplexy and Nervous Diseases, 2022, 39(9): 845-848. DOI: 10.19845/j.cnki.zfysjjbzz.2022.0212.

PREV Diffusion kurtosis imaging reveals microstructural abnormalities in cerebral white matter fiber tracts in children with global developmental delay
NEXT Abnormal cortical thickness and functional connectivity of the left insula and right posterior parietal cortex in Crohn,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn