Share:
Share this content in WeChat
X
Clinical Article
Abnormal cortical thickness and functional connectivity of the left insula and right posterior parietal cortex in Crohn's disease
ZHENG Yanling  LI Yunfei  HU Yang  RONG Lan  ZHOU Yan  LIANG Zonghui 

Cite this article as: ZHENG Y L, LI Y F, HU Y, et al. Abnormal cortical thickness and functional connectivity of the left insula and right posterior parietal cortex in Crohn's disease[J]. Chin J Magn Reson Imaging, 2024, 15(6): 31-35. DOI:10.12015/issn.1674-8034.2024.06.004.


[Abstract] Objective To investigate the alterations in brain structure and function among patients with Crohn's disease (CD) and their correlation with clinical indicators.Materials and Methods Brain structural and resting-state functional magnetic resonance imaging data, along with clinical indicator data, were collected from 20 CD patients and 21 healthy controls. Based on the Schaefer atlas, the left and right hemispheres were divided into 100 brain regions, and the differences in cortical thickness between the two groups were examined. Functional connectivity (FC) was calculated among the brain regions showing significant structural group difference, and the differences in FC between the two groups were compared. The associations between clinical indicators [Self-rating Anxiety Scale (SAS) score, Self-rating Depression Scale (SDS) score, CD activity index and disease duration] and abnormal cortical thickness & FC were measured using Pearson correlation coefficient in CD group.Results Compared to the healthy control group, CD patients exhibited a decrease in cortical thickness in the left insula (P=0.002, FDR correction) and right posterior parietal cortex (P=0.031, FDR correction). The FC between the left insula and right posterior parietal cortex was significantly reduced in CD group (P=0.025). Furthermore, there was a significant negative correlation between cortical thickness of left insula and SDS score among CD patients (r=-0.61, P=0.007).Conclusions The left insular and right posterior parietal cortex structure and FC are damaged in CD patients compared with normal controls. The thickness of left insular cortex is associated with the increase of depression score, which provides new clues for understanding the neural mechanism of CD.
[Keywords] Crohn's disease;neural mechanism;functional magnetic resonance imaging;structural magnetic resonance imaging;magnetic resonance imaging

ZHENG Yanling1   LI Yunfei2   HU Yang3   RONG Lan4   ZHOU Yan5   LIANG Zonghui1*  

1 Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai 200040, China

2 Department of Radiology, the Fifth People's Hospital of Shanghai,Fudan University, Shanghai 200240, China

3 Bi-Liang Brain Imaging Group, Liangjiang New Area, Chongqing 401120, China

4 Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai 200040, China

5 Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China

Corresponding author: LIANG Z H, E-mail: liangzh@vip.163.com

Conflicts of interest   None.

Received  2024-02-26
Accepted  2024-05-14
DOI: 10.12015/issn.1674-8034.2024.06.004
Cite this article as: ZHENG Y L, LI Y F, HU Y, et al. Abnormal cortical thickness and functional connectivity of the left insula and right posterior parietal cortex in Crohn's disease[J]. Chin J Magn Reson Imaging, 2024, 15(6): 31-35. DOI:10.12015/issn.1674-8034.2024.06.004.

[1]
TANG W L, LI K. Progress in MRI study of brain structure and functional alterations in patients with Crohn's disease[J]. Chin J Magn Reson Imag, 2022, 13(8): 154-157. DOI: 10.12015/issn.1674-8034.2022.08.035.
[2]
BAILLIE S, NORTON C, SAXENA S, et al. Chronic abdominal pain in inflammatory bowel disease: a practical guide[J]. Frontline Gastroenterol, 2024, 15(2): 144-153. DOI: 10.1136/flgastro-2023-102471.
[3]
ZHANG J X, LIU C, AN P, et al. Psychological symptoms and quality of life in patients with inflammatory bowel disease in China: a multicenter study[J]. United European Gastroenterol J, 2024, 12(3): 374-389. DOI: 10.1002/ueg2.12532.
[4]
MASANETZ R K, WINKLER J, WINNER B, et al. The gut-immune-brain axis: an important route for neuropsychiatric morbidity in inflammatory bowel disease[J/OL]. Int J Mol Sci, 2022, 23(19): 11111 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/36232412/. DOI: 10.3390/ijms231911111.
[5]
PALOMERO-GALLAGHER N, AMUNTS K. A short review on emotion processing: a lateralized network of neuronal networks[J]. Brain Struct Funct, 2022, 227(2): 673-684. DOI: 10.1007/s00429-021-02331-7.
[6]
PIETRACUPA S, BELVISI D, PIERVINCENZI C, et al. White and gray matter alterations in de novo PD patients: which matter most?[J]. J Neurol, 2023, 270(5): 2734-2742. DOI: 10.1007/s00415-023-11607-3.
[7]
KORANN V, THONSE U, GARANI R, et al. Association between urban upbringing and functional brain connectivity in schizophrenia[J]. Indian J Psychiatry, 2024, 66(1): 71-81. DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_560_23.
[8]
BAO C H, LIU P, LIU H R, et al. Alterations in brain grey matter structures in patients with Crohn's disease and their correlation with psychological distress[J]. J Crohns Colitis, 2015, 9(7): 532-540. DOI: 10.1093/ecco-jcc/jjv057.
[9]
BAO C H, LIU P, LIU H R, et al. Difference in regional neural fluctuations and functional connectivity in Crohn's disease: a resting-state functional MRI study[J]. Brain Imaging Behav, 2018, 12(6): 1795-1803. DOI: 10.1007/s11682-018-9850-z.
[10]
THAPALIYA G, ELDEGHAIDY S, RADFORD S J, et al. An examination of resting-state functional connectivity in patients with active Crohn's disease[J/OL]. Front Neurosci, 2023, 17: 1265815 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/38125406/. DOI: 10.3389/fnins.2023.1265815.
[11]
HUANG M T, MA G N, ZOU Y, et al. A potential brain functional biomarker distinguishing patients with Crohn's disease with different disease stages: a resting-state fMRI study[J/OL]. Front Neurosci, 2024, 18: 1361320 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/38500485/. DOI: 10.3389/fnins.2024.1361320.
[12]
CHEN F R, ZHANG S M, LI P Y, et al. Disruption of periaqueductal gray-default mode network functional connectivity in patients with Crohn's disease with abdominal pain[J/OL]. Neuroscience, 2023, 517: 96-104 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/36898497/. DOI: 10.1016/j.neuroscience.2023.03.002.
[13]
HOU J C, DODD K, NAIR V A, et al. Alterations in brain white matter microstructural properties in patients with Crohn's disease in remission[J/OL]. Sci Rep, 2020, 10(1): 2145 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/32034257/. DOI: 10.1038/s41598-020-59098-w.
[14]
THOMANN A K, THOMANN P A, WOLF R C, et al. Altered markers of brain development in Crohn's disease with extraintestinal manifestations-A pilot study[J/OL]. PLoS One, 2016, 11(9): e0163202 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/27655165/. DOI: 10.1371/journal.pone.0163202.
[15]
WU K C, LIANG J, RAN Z H, et al. Chinese consensus on diagnosis and treatment of inflammatory bowel disease(Beijing, 2018)[J]. Chin J Pract Intern Med, 2018, 38(9): 796-813. DOI: 10.19538/j.nk2018090106.
[16]
DALE A, FISCHL B, SERENO M. Cortical surface-based analysis I. segmentation and surface reconstruction[J/OL]. NeuroImage, 1999, 9: 179-194 [2024-02-25]. https://www.sciencedirect.com/science/article/abs/pii/S1053811998903950?via%3Dihub. DOI: 10.1006/nimg.1998.0395.
[17]
FISCHL B, SERENO M I, DALE A M. Cortical surface-based analysis. Ⅱ: inflation, flattening, and a surface-based coordinate system[J]. NeuroImage, 1999, 9(2): 195-207. DOI: 10.1006/nimg.1998.0396.
[18]
SCHAEFER A, KONG R, GORDON E M, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI[J]. Cereb Cortex, 2018, 28(9): 3095-3114. DOI: 10.1093/cercor/bhx179.
[19]
HU Y, LI Q F, QIAO K N, et al. PhiPipe: a multi-modal MRI data processing pipeline with test-retest reliability and predicative validity assessments[J]. Hum Brain Mapp, 2023, 44(5): 2062-2084. DOI: 10.1002/hbm.26194.
[20]
COX R W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages[J]. Comput Biomed Res, 1996, 29(3): 162-173. DOI: 10.1006/cbmr.1996.0014.
[21]
ZHANG S M, CHEN F R, WU J Y, et al. Regional gray matter volume changes in brains of patients with ulcerative colitis[J]. Inflamm Bowel Dis, 2022, 28(4): 599-610. DOI: 10.1093/ibd/izab252.
[22]
BARBERIO B, ZAMANI M, BLACK C J, et al. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2021, 6(5): 359-370. DOI: 10.1016/S2468-1253(21)00014-5.
[23]
BERNARD J, BARNETCHE T, AMORY C, et al. Frequency of irritable bowel syndrome in spondyloarthritis: a multicentric cross-sectional study and meta-analysis[J/OL]. RMD Open, 2024, 10(1): e003836 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/38216286/. DOI: 10.1136/rmdopen-2023-003836.
[24]
HE Z H, LI S J, MO L C, et al. The VLPFC-engaged voluntary emotion regulation: combined TMS-fMRI evidence for the neural circuit of cognitive reappraisal[J]. J Neurosci, 2023, 43(34): 6046-6060. DOI: 10.1523/JNEUROSCI.1337-22.2023.
[25]
KÄMPE R, PAUL E R, ÖSTMAN L, et al. Contributions of polygenic risk and disease status to gray matter abnormalities in major depression[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2024, 9(4): 437-446. DOI: 10.1016/j.bpsc.2023.12.001.
[26]
YAN H H, ZHANG Y Y, SHAN X X, et al. Altered interhemispheric functional connectivity in patients with obsessive-compulsive disorder and its potential in therapeutic response prediction[J/OL]. J Neurosci Res, 2024, 102(1) [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/38284840/. DOI: 10.1002/jnr.25272.
[27]
LUNVEN M, BARTOLOMEO P. Attention and spatial cognition: neural and anatomical substrates of visual neglect[J]. Ann Phys Rehabil Med, 2017, 60(3): 124-129. DOI: 10.1016/j.rehab.2016.01.004.
[28]
WHITLOCK J R. Posterior parietal cortex[J/OL]. Curr Biol, 2017, 27(14): R691-R695 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/28743011/. DOI: 10.1016/j.cub.2017.06.007.
[29]
HÉLIE S. The role of posterior parietal cortex in detecting changes in feedback contingency[J]. Brain Struct Funct, 2024, 229(3): 775-787. DOI: 10.1007/s00429-024-02765-9.
[30]
LI Y X, RAN Y, YAO M H, et al. Altered static and dynamic functional connectivity of the default mode network across epilepsy subtypes in children: a resting-state fMRI study[J/OL]. Neurobiol Dis, 2024, 192: 106425 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/38296113/. DOI: 10.1016/j.nbd.2024.106425.
[31]
THOMANN A K, REINDL W, WÜSTENBERG T, et al. Aberrant brain structural large-scale connectome in Crohn's disease[J/OL]. Neurogastroenterol Motil, 2019, 31(6): e13593 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/30983094/. DOI: 10.1111/nmo.13593.
[32]
AGOSTINI A, BALLOTTA D, RIGHI S, et al. Stress and brain functional changes in patients with Crohn's disease: a functional magnetic resonance imaging study[J]. Neurogastroenterol Motil, 2017, 29(10): 1-10. DOI: 10.1111/nmo.13108.
[33]
MENON V, GALLARDO G, PINSK M A, et al. Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control[J/OL]. Elife, 2020, 9: e53470 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/32496190/. DOI: 10.7554/eLife.53470.
[34]
TAKAHASHI T, KIDO M, SASABAYASHI D, et al. Gray matter changes in the insular cortex during the course of the schizophrenia spectrum[J/OL]. Front Psychiatry, 2020, 11: 659 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/32754066/. DOI: 10.3389/fpsyt.2020.00659.
[35]
YIN Z Y, CHANG M, WEI S N, et al. Decreased functional connectivity in insular subregions in depressive episodes of bipolar disorder and major depressive disorder[J/OL]. Front Neurosci, 2018, 12: 842 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/30487732/. DOI: 10.3389/fnins.2018.00842.
[36]
ZHANG J L, ZHOU N, SONG K R, et al. Neural activations to loss anticipation mediates the association between difficulties in emotion regulation and screen media activities among early adolescent youth: a moderating role for depression[J/OL]. Dev Cogn Neurosci, 2022, 58: 101186 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/36516611/. DOI: 10.1016/j.dcn.2022.101186.
[37]
SCHNELLBÄCHER G J, RAJKUMAR R, VESELINOVIĆ T, et al. Structural alterations of the insula in depression patients-A 7-Tesla-MRI study[J/OL]. Neuroimage Clin, 2022, 36: 103249 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/36451355/. DOI: 10.1016/j.nicl.2022.103249.
[38]
AZIZ M N M, KUMAR J, MUHAMMAD NAWAWI K N, et al. Irritable bowel syndrome, depression, and neurodegeneration: a bidirectional communication from gut to brain[J/OL]. Nutrients, 2021, 13(9): 3061 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/34578939/. DOI: 10.3390/nu13093061.

PREV A study on the brain functional network of adult epilepsy comorbidity depression
NEXT Alterations in amplitude of low frequency fluctuation and functional connectivity of brain in primary dysmenorrhea patients under different self-states: A resting-state functional magnetic resonance imaging study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn