Share:
Share this content in WeChat
X
Clinical Article
Application value of structural MRI combined with computerized cognitive assessment based on VR eye-tracking technology in early diagnosis of Alzheimer's disease
WEI Zhuonan  FAN Xiang  YU Keyan  CHEN Lele  YIN Chenwang  CHEN Hui  QI Yulong  CHEN Xuhui  HU Jun  ZHANG Xu  CHENG Guanxun 

Cite this article as: WEI Z N, FAN X, YU K Y, et al. Application value of structural MRI combined with computerized cognitive assessment based on VR eye-tracking technology in early diagnosis of Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(6): 49-53. DOI:10.12015/issn.1674-8034.2024.06.007.


[Abstract] Objective To explore the clinical application value of structural MRI in conjunction with computerized cognitive assessment based on VR eye-tracking technology in early diagnosis of Alzheimer's disease (AD).Materials and Methods Seventy-seven patients with early AD and fifty-eight cognitively unimpaired (CU) participants underwent the traditional neuropsychological scale assessment [including Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA)], a 5-minute VR eye-tracking technology-based cognitive assessment, and 3D T1-weighted MRI. The hippocampal volume (HV) was quantified using an automatic structural analysis tool. Receiver operating characteristic (ROC) curves were constructed to analyze the diagnostic effectiveness of the single index (HV) and the combined index (HV along with the total score from the VR eye-tracking technology-based cognitive assessment) for AD.Results (1) The area under ROC curve (AUC) of early AD diagnosed by HV was 0.629 (95% CI:0.542-0.711). When combining HV with the VR eye-tracking cognitive assessment, the AUC increased to 0.825 (95% CI: 0.751-0.885). The DeLong test results indicated a significant difference between the two methods (P<0.001). (2) The HV in the early AD group was significantly lower than that in the CU group (Z=-2.565, P=0.010). (3) The total score of VR eye-tracking cognitive assessment was positively correlated with MMSE score and MoCA score (r=0.531, 0.627, P<0.001).Conclusions Combining computerized cognitive assessment using VR eye-tracking technology significantly enhances the diagnostic value of hippocampal volume in the early detection of AD.
[Keywords] Alzheimer's disease;magnetic resonance imaging;eye-tracking;computerized cognitive assessment;hippocampal volume

WEI Zhuonan1   FAN Xiang1   YU Keyan1   CHEN Lele1   YIN Chenwang1   CHEN Hui1   QI Yulong1   CHEN Xuhui2   HU Jun2   ZHANG Xu3   CHENG Guanxun1*  

1 Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen 518036, China

2 Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518036, China

3 National Engineering laboralory for Big Data System Computing Technology, Shenzhen Universitiy, Shenzhen 518061, China

Corresponding author: CHENG G X, E-mail: 18903015678@189.cn

Conflicts of interest   None.

Received  2024-01-15
Accepted  2024-05-31
DOI: 10.12015/issn.1674-8034.2024.06.007
Cite this article as: WEI Z N, FAN X, YU K Y, et al. Application value of structural MRI combined with computerized cognitive assessment based on VR eye-tracking technology in early diagnosis of Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(6): 49-53. DOI:10.12015/issn.1674-8034.2024.06.007.

[1]
JACK C R JR, BENNETT D A, BLENNOW K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 535-562. DOI: 10.1016/j.jalz.2018.02.018.
[2]
REN R J, DUAN P, WANG Z H, et al. Report on Alzheimer's Disease in China 2021[J]. Theory and Practice of Diagnostics, 2021, 20(4): 317-337. DOI: 10.16150/j.1671-2870.2021.04.001.
[3]
CHOULIARAS L, O'BRIEN J T. The use of neuroimaging techniques in the early and differential diagnosis of dementia[J]. Mol Psychiatry, 2023, 28(10): 4084-4097. DOI: 10.1038/s41380-023-02215-8.
[4]
PALMQVIST S, TIDEMAN P, CULLEN N, et al. Prediction of future Alzheimer's disease dementia using plasma phospho-tau combined with other accessible measures[J]. Nat Med, 2021, 27(6): 1034-1042. DOI: 10.1038/s41591-021-01348-z.
[5]
EMSELL L, VANHAUTE H, VANSTEELANDT K, et al. An optimized MRI and PET based clinical protocol for improving the differential diagnosis of geriatric depression and Alzheimer's disease[J/OL]. Psychiatry Res Neuroimaging, 2022, 320: 111443 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/35091333/. DOI: 10.1016/j.pscychresns.2022.111443.
[6]
MR Group of Chinese Society of Radiology, Chinese Medical Association Beijing Cognitive Neuroscience Society. Chinese experts consensus on standard of MRI technology of Alzheimer disease[J]. Chin J Radiol, 2019, 53(8): 635-641. DOI: 10.3760/cma.j.issn.1005-1201.2019.08.002.
[7]
CHEN X C, JIA J P, GUO Q H. Chinese expert consensus on brief screening of prodromal Alzheimer's disease (2023)[J]. Chinese Journal of Neuromedicine, 22(5): 433-444. DOI: 10.3760/cma.j.cn115354-20230330-00191.
[8]
DUBOIS B, FELDMAN H H, JACOVA C, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria[J]. Lancet Neurol, 2007, 6(8): 734-746. DOI: 10.1016/S1474-4422(07)70178-3.
[9]
PARK H Y, PARK C R, SUH C H, et al. Diagnostic performance of the medial temporal lobe atrophy scale in patients with Alzheimer's disease: a systematic review and meta-analysis[J]. Eur Radiol, 2021, 31(12): 9060-9072. DOI: 10.1007/s00330-021-08227-8.
[10]
MAI Y, CAO Z, ZHAO L, et al. The role of visual rating and automated brain volumetry in early detection and differential diagnosis of Alzheimer's disease[J/OL]. CNS Neurosci Ther, 2024, 30(4): e14492 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/37864441/. DOI: 10.1111/cns.14492.
[11]
MAK H K, QIAN W, NG K S, et al. Combination of MRI hippocampal volumetry and arterial spin labeling MR perfusion at 3-Tesla improves the efficacy in discriminating Alzheimer's disease from cognitively normal elderly adults[J]. J Alzheimers Dis, 2014, 41(3): 749-758. DOI: 10.3233/JAD-131868.
[12]
DAN W, ZHAO H G, XING H L, et al. Examination of hippocampal differences between Alzheimer disease, amnestic mild cognitive impairment and normal aging: diffusion kurtosis[J]. Curr Alzheimer Res, 2015, 12(1): 80-87. DOI: 10.2174/1567205012666141218142422.
[13]
LOMBARDI G, CRESCIOLI G, CAVEDO E, et al. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment[J/OL]. Cochrane Database Syst Rev, 2020, 3(3): CD009628 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/32119112/. DOI: 10.1002/14651858.CD009628.pub2.
[14]
WOLF A, TRIPANPITAK K, UMEDA S, et al. Eye-tracking paradigms for the assessment of mild cognitive impairment: a systematic review[J/OL]. Front Psychol, 2023, 14: 1197567 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/37546488/. DOI: 10.3389/fpsyg.2023.1197567.
[15]
CHEHREHNEGAR N, SHATI M, ESMAEILI M, et al. Executive function deficits in mild cognitive impairment: evidence from saccade tasks[J]. Aging Ment Health, 2022, 26(5): 1001-1009. DOI: 10.1080/13607863.2021.1913471.
[16]
ERASLAN BOZ H, KOCOGLU K, AKKOYUN M, et al. Visual search in Alzheimer's disease and amnestic mild cognitive impairment: An eye-tracking study[J]. Alzheimers Dement, 2024, 20(2): 759-768. DOI: 10.1002/alz.13478.
[17]
GILLS J L, BOTT N T, MADERO E N, et al. A short digital eye-tracking assessment predicts cognitive status among adults[J]. Geroscience, 2021, 43(1): 297-308. DOI: 10.1007/s11357-020-00254-5.
[18]
HOWETT D, CASTEGNARO A, KRZYWICKA K, et al. Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation[J]. Brain, 2019, 142(6): 1751-1766. DOI: 10.1093/brain/awz116.
[19]
ZOLA S M, MANZANARES C M, CLOPTON P, et al. A behavioral task predicts conversion to mild cognitive impairment and Alzheimer's disease[J]. Am J Alzheimers Dis Other Demen, 2013, 28(2): 179-184. DOI: 10.1177/1533317512470484.
[20]
ALBERT M S, DEKOSKY S T, DICKSON D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 270-279. DOI: 10.1016/j.jalz.2011.03.008.
[21]
MCKHANN G M, KNOPMAN D S, CHERTKOW H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 263-269. DOI: 10.1016/j.jalz.2011.03.005.
[22]
LI H B, TANG X Q, CHEN Y, et al. Primary study of automatic segmentation and measurement of brain region volumes applicating in Alzheimer's disease diagnosis[J]. Chin J Magn Reson Imaging, 2021, 12(6): 27-33. DOI: 10.12015/issn.1674-8034.2021.06.006.
[23]
YUAN Q, ZHANG X, XU Y, et al. Application of VR eye movement cognitive assessment in the early screening of cognitive impairment[J/OL]. Res Sq, 2023 [2024-01-15]. https://www.researchsquare.com/article/rs-2825752/v1. DOI: 10.21203/rs.3.rs-2825752/v1.
[24]
TONDELLI M, WILCOCK G K, NICHELLI P, et al. Structural MRI changes detectable up to ten years before clinical Alzheimer's disease[J/OL]. Neurobiol Aging, 2012, 33(4): 825.e25-e36 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/21782287/. DOI: 10.1016/j.neurobiolaging.2011.05.018.
[25]
LI X, COYLE D, MAGUIRE L, et al. Gray matter concentration and effective connectivity changes in Alzheimer's disease: a longitudinal structural MRI study[J]. Neuroradiology, 2011, 53(10): 733-748. DOI: 10.1007/s00234-010-0795-1.
[26]
HAMPEL H, FRANK R, BROICH K, et al. Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives[J]. Nat Rev Drug Discov, 2010, 9(7): 560-574. DOI: 10.1038/nrd3115.
[27]
JACK C R JR, BARKHOF F, BERNSTEIN M A, et al. Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease[J/OL]. Alzheimers Dement, 2011, 7(4): 474-485.e4 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/21784356/. DOI: 10.1016/j.jalz.2011.04.007.
[28]
SPERLING R A, AISEN P S, BECKETT L A, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 280-292. DOI: 10.1016/j.jalz.2011.03.003.
[29]
VEMURI P, JACK C R JR. Role of structural MRI in Alzheimer's disease[J/OL]. Alzheimers Res Ther, 2010, 2(4): 23 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/20807454/. DOI: 10.1186/alzrt47.
[30]
LEE J Y, KHO S, YOO H B, et al. Spatial memory impairments in amnestic mild cognitive impairment in a virtual radial arm maze[J]. Neuropsychiatr Dis Treat, 2014, 10: 653-660. DOI: 10.2147/NDT.S58185.
[31]
NIE J, QIU Q, PHILLIPS M, et al. Early diagnosis of mild cognitive impairment based on eye movement parameters in an aging chinese population[J/OL]. Front Aging Neurosci, 2020, 12: 221 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/32848703/. DOI: 10.3389/fnagi.2020.00221.
[32]
CAMARGO M, PAIS M V, BELLAN A F R, et al. Impact of cognitive demand on eye movement pattern in patients with Alzheimer's disease[J]. J Alzheimers Dis, 2022, 90(1): 85-95. DOI: 10.3233/JAD-220385.
[33]
KOURTIS L C, REGELE O B, WRIGHT J M, et al. Digital biomarkers for Alzheimer's disease: the mobile/ wearable devices opportunity[J/OL]. NPJ Digit Med, 2019, 2: 9 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/31119198/. DOI: 10.1038/s41746-019-0084-2.
[34]
CECCHINI M A, YASSUDA M S, SQUARZONI P, et al. Deficits in short-term memory binding are detectable in individuals with brain amyloid deposition in the absence of overt neurodegeneration in the Alzheimer's disease continuum[J/OL]. Brain Cogn, 2021, 152: 105749 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/34022637/. DOI: 10.1016/j.bandc.2021.105749.
[35]
OYAMA A, TAKEDA S, ITO Y, et al. Novel method for rapid assessment of cognitive impairment using high-performance eye-tracking technology[J/OL]. Sci Rep, 2019, 9(1): 12932 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/31506486/. DOI: 10.1038/s41598-019-49275-x.
[36]
HAMPSTEAD B M, TOWLER S, STRINGER A Y, et al. Continuous measurement of object location memory is sensitive to effects of age and mild cognitive impairment and related to medial temporal lobe volume[J]. Alzheimers Dement (Amst), 2018, 10: 76-85. DOI: 10.1016/j.dadm.2017.10.007.
[37]
CABINIO M, ROSSETTO F, ISERNIA S, et al. The use of a virtual reality platform for the assessment of the memory decline and the hippocampal neural injury in subjects with mild cognitive impairment: The validity of smart aging serious game (SASG)[J/OL]. J Clin Med, 2020, 9(5) 1355 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/32384591/. DOI: 10.3390/jcm9051355.

PREV Immediate brain network changes in AIS patients treated with electroacupuncture by observing resting-state functional magnetic resonance imaging
NEXT Degree centrality of brain network in immigrants at ultra-high altitudes: A resting state functional MRI study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn