Share:
Share this content in WeChat
X
Clinical Article
Degree centrality of brain network in immigrants at ultra-high altitudes: A resting state functional MRI study
CHEN Jiajie  WANG Fan  DANZENG Nianza  YANG Jie  ZHANG Yabin  WANG Zhidong  LI Qiang  DAI Xiaofeng 

Cite this article as: CHEN J J, WANG F, DANZENG N Z, et al. Degree centrality of brain network in immigrants at ultra-high altitudes: A resting state functional MRI study[J]. Chin J Magn Reson Imaging, 2024, 15(6): 54-58. DOI:10.12015/issn.1674-8034.2024.06.008.


[Abstract] Objective To explore the effects of ultra-high altitude environment on the network degree centrality in migrant populations.Materials and Methods Healthy individuals were recruited in ultra-high altitude (Lhasa) and high altitude (Lanzhou). Physiological indicators (arterial oxygen saturation, heart rate and breath-holding time after inhalation) and imaging dates (resting functional magnetic resonance imaging and 3D T1WI) were collected. The degree centrality (DC) of resting-state functional magnetic resonance imaging data were performed. Two-sample t-test was used to compare physiologic and DC values between groups. Controlling for factors that differed in demographic significance between groups. The partial correlation was analyzed between DC values of differential brain regions and physiological factors.Results Compared with high altitude group, the migrants in ultra-high altitude group had a decrease in their breath holding time and oxygen saturation, and an increase in heart rate (P<0.001). The DC value of visually related brain regions, such as bilateral Calcarine gyrus, middle occipital gyrus and cuneus, and the right central posterior gyrus increased (FDR correction, P<0.05) in ultra-high altitude group, which were negatively correlated with arterial oxygen saturation (r=-0.360, P=0.006; r=-0.481, P<0.001). The DC value of bilateral insula and putamen, right middle cingulate and supplementary motor area and left cerebellum decreased (FDR correction, P<0.05) in ultra-high altitude group. The DC value of right insula and putamen, left insula and putamen and left cerebellum were positively correlated with arterial oxygen saturation (r=0.518, P<0.001; r=0.416, P=0.001; r=0.414, P=0.001).Conclusions The high-altitude environment may alters post inspiratory breath-holding time and heart rate, enhances functional compensatory in visual areas, and weakens the centrality of the nucleus accumbens, insula, and cerebellum in the functional brain network. These features may serve as potential imaging biomarkers of the degree centrality on functional brain networks in immigrant populations in ultra-high altitude environments.
[Keywords] ultra-high altitude;resting state;degree centrality;occipital lobe;insula;cerebellum;magnetic resonance imaging

CHEN Jiajie1   WANG Fan1   DANZENG Nianza2   YANG Jie2   ZHANG Yabin3   WANG Zhidong1   LI Qiang1   DAI Xiaofeng3*  

1 Department of Radiological Diagnosis, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038, China

2 Department of Radiological Diagnosis, General Hospital of Xizang Military Region, Lhasa 850007, China

3 Department of Medical Imaging, 96604 Military Hospital of China People's Liberation Army, Lanzhou 730030, China

Corresponding author: DAI X F, E-mail: 154458713@qq.com

Conflicts of interest   None.

Received  2024-01-16
Accepted  2024-05-13
DOI: 10.12015/issn.1674-8034.2024.06.008
Cite this article as: CHEN J J, WANG F, DANZENG N Z, et al. Degree centrality of brain network in immigrants at ultra-high altitudes: A resting state functional MRI study[J]. Chin J Magn Reson Imaging, 2024, 15(6): 54-58. DOI:10.12015/issn.1674-8034.2024.06.008.

[1]
TREMBLAY J C, AINSLIE P N. Global and country-level estimates of human population at high altitude[J/OL]. Proc Natl Acad Sci U S A, 2021, 118(18): e2102463118 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/33903258/. DOI: 10.1073/pnas.2102463118.
[2]
KANDEL K, REGMI P R, POUDEL S. Susceptibility - weighted imaging: a valuable diagnostic tool for early detection of high-altitude cerebral edema: a case report[J]. Radiol Case Rep, 2023, 18(9): 3089-3092. DOI: 10.1016/j.radcr.2023.06.009.
[3]
GIBBONS T D, CALDWELL H G, ISLAM H, et al. Intense exercise at high altitude causes platelet loss across the brain in humans[J/OL]. J Physiol, 2024 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/38180146/. DOI: 10.1113/JP285603.
[4]
LUKS A M, HACKETT P H. Medical conditions and high-altitude travel[J]. N Engl J Med, 2022, 386(4): 364-373. DOI: 10.1056/NEJMra2104829.
[5]
MCMORRIS T, HALE B J, BARWOOD M, et al. Effect of acute hypoxia on cognition: a systematic review and meta-regression analysis[J]. Neurosci Biobehav Rev, 2017, 74(Pt A): 225-232. DOI: 10.1016/j.neubiorev.2017.01.019.
[6]
GRIVA K, STYGALL J, WILSON M H, et al. Caudwell Xtreme Everest: a prospective study of the effects of environmental hypoxia on cognitive functioning[J/OL]. PLoS One, 2017, 12(3): e0174277 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/28346535/. DOI: 10.1371/journal.pone.0174277.
[7]
LUO Q, ZHANG J X, HUANG S, et al. Effects of long-term exposure to high altitude on brain structure in healthy people: an MRI-based systematic review and meta-analysis[J/OL]. Front Psychiatry, 2023, 14: 1196113 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/37435401/. DOI: 10.3389/fpsyt.2023.1196113.
[8]
CHEN X, ZHANG J X, LIN Y, et al. Mechanism, prevention and treatment of cognitive impairment caused by high altitude exposure[J/OL]. Front Physiol, 2023, 14: 1191058 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/37731540/. DOI: 10.3389/fphys.2023.1191058.
[9]
ZHANG X J, ZHANG J X. The human brain in a high altitude natural environment: a review[J/OL]. Front Hum Neurosci, 2022, 16: 915995 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/36188182/. DOI: 10.3389/fnhum.2022.915995.
[10]
ZHANG Z A, SUN Y F, YUAN Z Y, et al. Insight into the effects of high-altitude hypoxic exposure on learning and memory[J/OL]. Oxid Med Cell Longev, 2022, 2022: 4163188 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/36160703/. DOI: 10.1155/2022/4163188.
[11]
ZHANG D L, MA H L, HUANG J Q, et al. Exploring the impact of chronic high-altitude exposure on visual spatial attention using the ERP approach[J/OL]. Brain Behav, 2018, 8(5): e00944 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/29761004/. DOI: 10.1002/brb3.944.
[12]
ZHANG J X, CHEN J, FAN C X, et al. Alteration of spontaneous brain activity after hypoxia-reoxygenation: a resting-state fMRI study[J]. High Alt Med Biol, 2017, 18(1): 20-26. DOI: 10.1089/ham.2016.0083.
[13]
BURTSCHER J, MALLET R T, BURTSCHER M, et al. Hypoxia and brain aging: Neurodegeneration or neuroprotection?[J/OL]. Ageing Res Rev, 2021, 68: 101343 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/33862277/. DOI: 10.1016/j.arr.2021.101343.
[14]
ZHANG Y Q, ZHANG W J, LIU J H, et al. Effects of chronic hypoxic environment on cognitive function and neuroimaging measures in a high-altitude population[J/OL]. Front Aging Neurosci, 2022, 14: 788322 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/35601614/. DOI: 10.3389/fnagi.2022.788322.
[15]
CHANG W W, LIU J P, NIE L L, et al. The degree centrality and functional connectivity in patients with temporal lobe epilepsy presenting as ictal panic: a resting state fMRI study[J/OL]. Front Neurol, 2022, 13: 822253 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/35837228/. DOI: 10.3389/fneur.2022.822253.
[16]
WU K F, LIU M, HE L C, et al. Abnormal degree centrality in delayed encephalopathy after carbon monoxide poisoning: a resting-state fMRI study[J]. Neuroradiology, 2020, 62(5): 609-616. DOI: 10.1007/s00234-020-02369-0.
[17]
SYAN S K, MCINTYRE-WOOD C, MINUZZI L, et al. Dysregulated resting state functional connectivity and obesity: a systematic review[J/OL]. Neurosci Biobehav Rev, 2021, 131: 270-292 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/34425125/. DOI: 10.1016/j.neubiorev.2021.08.019.
[18]
FLAHERTY G T, CHUA C W. High altitude travel and mental health[J/OL]. J Travel Med, 2018, 25(1) [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/29672711/. DOI: 10.1093/jtm/tay025.
[19]
FURIAN M, TANNHEIMER M, BURTSCHER M. Effects of acute exposure and acclimatization to high-altitude on oxygen saturation and related cardiorespiratory fitness in health and disease[J/OL]. J Clin Med, 2022, 11(22): 6699 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/36431176/. DOI: 10.3390/jcm11226699.
[20]
RICHALET J P, HERMAND E, LHUISSIER F J. Cardiovascular physiology and pathophysiology at high altitude[J]. Nat Rev Cardiol, 2024, 21(2): 75-88. DOI: 10.1038/s41569-023-00924-9.
[21]
DURAND S, IYER R, MIZUSEKI K, et al. A comparison of visual response properties in the lateral geniculate nucleus and primary visual cortex of awake and anesthetized mice[J]. J Neurosci, 2016, 36(48): 12144-12156. DOI: 10.1523/JNEUROSCI.1741-16.2016.
[22]
PANG K P, LENNIKOV A, YANG M L. Hypoxia adaptation in the cornea: current animal models and underlying mechanisms[J]. Animal Model Exp Med, 2021, 4(4): 300-310. DOI: 10.1002/ame2.12192.
[23]
SHRESTHA A, SUWAL R, SHRESTHA B. Vitreous Hemorrhage following High-Altitude Retinopathy[J/OL]. Case Rep Ophthalmol Med, 2021, 2021: 7076190 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/34422422/. DOI: 10.1155/2021/7076190.
[24]
ZHANG Q F, LI H, CHEN M, et al. Functional organization of intrinsic and feedback presynaptic inputs in the primary visual cortex[J/OL]. Proc Natl Acad Sci U S A, 2018, 115(22): E5174-E5182 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/29760100/. DOI: 10.1073/pnas.1719711115.
[25]
ZHANG X J, KANG T S, LIU Y Q, et al. Resting-state neuronal activity and functional connectivity changes in the visual cortex after high altitude exposure: a longitudinal study[J/OL]. Brain Sci, 2022, 12(6): 724 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/35741609/. DOI: 10.3390/brainsci12060724.
[26]
FAN C X, ZHAO Y H, YU Q, et al. Reversible brain abnormalities in people without signs of mountain sickness during high-altitude exposure[J/OL]. Sci Rep, 2016, 6: 33596 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/27633944/. DOI: 10.1038/srep33596.
[27]
ZHAO J P, ZHANG R, YU Q, et al. Characteristics of EEG activity during high altitude hypoxia and lowland reoxygenation[J]. Brain Res, 2016, 1648(Pt A): 243-249. DOI: 10.1016/j.brainres.2016.07.013.
[28]
QUILLINAN N, HERSON P S, TRAYSTMAN R J. Neuropathophysiology of brain injury[J]. Anesthesiol Clin, 2016, 34(3): 453-464. DOI: 10.1016/j.anclin.2016.04.011.
[29]
MILLET G P, DEBEVEC T. CrossTalk proposal: Barometric pressure, independent of PO2, is the forgotten parameter in altitude physiology and mountain medicine[J]. J Physiol, 2020, 598(5): 893-896. DOI: 10.1113/JP278673.
[30]
HOILAND R L, HOWE C A, COOMBS G B, et al. Ventilatory and cerebrovascular regulation and integration at high-altitude[J]. Clin Auton Res, 2018, 28(4): 423-435. DOI: 10.1007/s10286-018-0522-2.
[31]
CAO Y X, CAO S D, GE R L, et al. Brain-aging related protein expression and imaging characteristics of mice exposed to chronic hypoxia at high altitude[J/OL]. Front Aging Neurosci, 2023, 15: 1268230 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/37849650/. DOI: 10.3389/fnagi.2023.1268230.
[32]
ZATORRE R J, FIELDS R D, JOHANSEN-BERG H. Plasticity in gray and white: neuroimaging changes in brain structure during learning[J]. Nat Neurosci, 2012, 15(4): 528-536. DOI: 10.1038/nn.3045.
[33]
CHEN X M, ZHANG Q, WANG J Y, et al. Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: a panel study[J]. Hum Brain Mapp, 2017, 38(8): 3865-3877. DOI: 10.1002/hbm.23635.
[34]
SHUSHANYAN R, GRIGORYAN A, ABGARYAN T, et al. Histological and cytochemical analysis of the brain under conditions of hypobaric hypoxia-induced oxygen deficiency in albino rats[J/OL]. Acta Histochem, 2023, 125(8): 152114 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/37980852/. DOI: 10.1016/j.acthis.2023.152114.
[35]
SHARMA R, CRAMER N P, PERRY B, et al. Chronic exposure to high altitude: synaptic, astroglial and memory changes[J/OL]. Sci Rep, 2019, 9(1): 16406 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/31712561/. DOI: 10.1038/s41598-019-52563-1.
[36]
LIU Y Q, YUAN F J, PENG Z W, et al. Decrease in cerebral blood flow after reoxygenation is associated with neurological syndrome sequelae and blood pressure[J/OL]. Brain Sci, 2023, 13(11): 1600 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/38002559/. DOI: 10.3390/brainsci13111600.
[37]
ZHANG J X, ZHANG H Y, CHEN J, et al. Structural modulation of brain development by oxygen: evidence on adolescents migrating from high altitude to sea level environment[J/OL]. PLoS One, 2013, 8(7): e67803 [2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/23874449/. DOI: 10.1371/journal.pone.0067803.

PREV Application value of structural MRI combined with computerized cognitive assessment based on VR eye-tracking technology in early diagnosis of Alzheimer,s disease
NEXT Study on brain structural magnetic resonance imaging characteristics and correlation with emotion and cognition in patients with coronary heart disease and depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn