Share:
Share this content in WeChat
X
Clinical Article
Study on brain structural magnetic resonance imaging characteristics and correlation with emotion and cognition in patients with coronary heart disease and depression
LIU Lei  ZHAO Tianzuo  XU Dan  YUAN Jie  WANG Xu  WANG Yanan  LIU Bei  ZHONG Liqun  LI Xiaozhen  SHE Wenlong  CHEN Zhengguang 

Cite this article as: LIU L, ZHAO T Z, XU D, et al. Study on brain structural magnetic resonance imaging characteristics and correlation with emotion and cognition in patients with coronary heart disease and depression[J]. Chin J Magn Reson Imaging, 2024, 15(6): 59-66. DOI:10.12015/issn.1674-8034.2024.06.009.


[Abstract] Objective To explore the MRI characteristics of brain structure in patients with coronary heart disease and depression (CHDD) and analyze their correlation with emotion and cognitive ability.Materials and Methods A case-control design was adopted, including 22 CHDD patients, 44 coronary heart disease without depression (CHD-nD) patients, and 30 healthy controls (HC). T1-weighted images of all subjects were processed using a MR brain structure segmentation auxiliary analysis system, and statistical analysis was performed using SPSS 26.0 software. Firstly, all data were tested for normality. For data conforming to a normal distribution, one-way ANOVA was used to compare the three groups, followed by post-hoc comparisons using the least significant difference (LSD) test. For non-normally distributed data, the Kruskal Wallis H nonparametric test was applied, with post-hoc comparisons performed using the Mann-Whitney U test and Bonferroni correction to control for errors in multiple comparisons. Additionally, correlation analysis was conducted to explore the relationship between brain structural changes and emotional and cognitive scores.Results (1) Compared to the HC group, the CHDD group showed significantly reduced cortical curvature in the right anterior middle frontal gyrus, inferior temporal gyrus, and lateral occipital cortex (P<0.05), and a significant increase in cortical surface area in the left superior temporal gyrus (P<0.05). (2) Compared to the HC group, CHD-nD patients exhibited a significant increase in the volume of the posterior corpus callosum and significant decreases in the proportion of whole brain volume in the left posterior cingulate gyrus, left operculum, right paracentral lobule, left hippocampal subiculum, left hippocampal fissure, and cortical curvature of the left entorhinal cortex (all P<0.05). (3) Compared to the HC group, the CHDD and CHD-nD groups showed significantly reduced proportions of whole brain volume in the bilateral medial orbitofrontal cortex. They left cuneus and reduced cortical curvature in the right precentral gyrus. Additionally, volume significantly increased in the right hippocampal fissure (all P<0.05). (4) Correlation analysis revealed that the Hamilton Depression Scale (HAMD) score was negatively correlated with the proportion of whole brain volume in the left medial orbitofrontal cortex (r=-0.228, P=0.025), right precentral gyrus (r=-0.239, P=0.019), and cortical curvature of the right lateral occipital cortex (r=-0.256, P=0.012), and positively correlated with the cortical surface area of the left superior temporal gyrus (r=0.254, P=0.013). The Montreal Cognitive Assessment (MoCA) score was positively correlated with the proportion of whole brain volume in the left medial orbitofrontal cortex (r=0.342, P=0.007).Conclusions Structural abnormalities in the frontal lobe (precentral gyrus anterior and precentral gyrus), temporal lobe (inferior temporal gyrus and superior temporal gyrus slope), occipital lobe (lateral occipital gyrus and cuneus), and hippocampal fissure of CHDD patients may be the neuroanatomical basis of CHDD. These brain regions are related to patients' emotional, and cognitive impairments.
[Keywords] coronary heart disease with depression;magnetic resonance imaging;MR segmentation system;emotion;cognition

LIU Lei1   ZHAO Tianzuo1   XU Dan1   YUAN Jie2   WANG Xu2   WANG Yanan3   LIU Bei1   ZHONG Liqun4   LI Xiaozhen1   SHE Wenlong1   CHEN Zhengguang1*  

1 Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China

2 Cardiovascular District Three, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 101100, China

3 Emergency Department, District Two, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 101100, China

4 Department of Encephalopathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China

Corresponding author: CHEN Z G, E-mail: guangchen999@sina.com

Conflicts of interest   None.

Received  2024-03-08
Accepted  2024-06-03
DOI: 10.12015/issn.1674-8034.2024.06.009
Cite this article as: LIU L, ZHAO T Z, XU D, et al. Study on brain structural magnetic resonance imaging characteristics and correlation with emotion and cognition in patients with coronary heart disease and depression[J]. Chin J Magn Reson Imaging, 2024, 15(6): 59-66. DOI:10.12015/issn.1674-8034.2024.06.009.

[1]
DE OLIVEIRA LATERZA RIBEIRO M, CORREIA V M, HERLING DE OLIVEIRA L L, et al. Evolving diagnostic and management advances in coronary heart disease[J/OL]. Life, 2023, 13(4): 951 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/37109480/. DOI: 10.3390/life13040951.
[2]
MALHI G S, MANN J J. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. DOI: 10.1016/S0140-6736(18)31948-2.
[3]
"China Cardiovascular Health and Disease Report 2022" writing team. Overview of report on cardiovascular health and diseases in China 2022[J]. Chin J Cardiovasc Res, 2023, 21(7): 577-600. DOI: 10.3969/j.issn.1672-5301.2023.07.001.
[4]
JHA M K, QAMAR A, VADUGANATHAN M, et al. Screening and management of depression in patients with cardiovascular disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(14): 1827-1845. DOI: 10.1016/j.jacc.2019.01.041.
[5]
FENG L M, LI L F, LIU W N, et al. Prevalence of depression in myocardial infarction[J/OL]. Medicine, 2019, 98(8): e14596 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/30813183/. DOI: 10.1097/md.0000000000014596.
[6]
WU Y S, ZHU B, CHEN Z J, et al. New insights into the comorbidity of coronary heart disease and depression[J/OL]. Curr Probl Cardiol, 2021, 46(3): 100413 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/31005351/. DOI: 10.1016/j.cpcardiol.2019.03.002.
[7]
ZHAO S W, ZHU L P, YANG J F. Association between depression and macrovascular disease: a mini review[J/OL]. Front Psychiatry, 2023, 14: 1215173 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/37457763/. DOI: 10.3389/fpsyt.2023.1215173.
[8]
GILBERT A M, PRASAD K, GORADIA D, et al. Grey matter volume reductions in the emotion network of patients with depression and coronary artery disease[J/OL]. Psychiatry Res, 2010, 181(1): 9-14 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/19959343/. DOI: 10.1016/j.pscychresns.2009.07.006.
[9]
Interventional Cardiology Group of the Cardiovascular Disease Branch of the Chinese Medical Association, Atherosclerosis and Coronary Heart Disease Group of the Cardiovascular Disease Branch of the Chinese Medical Association, Thrombosis Prevention and Treatment Professional Committee of the Cardiovascular Physicians Branch of the Chinese Medical Doctor Association, et al. Guidelines for the diagnosis and treatment of stable coronary heart disease[J]. Chin J Cardiol, 2018, 46(9): 680-694. DOI: 10.3760/cma.j.issn.0253-3758.2018.09.004.
[10]
Chinese Medical Association, Chinese Medical Association Magazine, Chinese Medical Association General Medicine Branch, et al. Guideline for primary care of major depressive disorder: practice version (2021)[J]. Chin J Gen Pract, 2021, 20(12): 1261-1268. DOI: 10.3760/cma.j.cn114798-20211020-00779.
[11]
XIAO B, CHENG X Q, LI Q F, et al. Weakly supervised confidence learning for brain MR image dense parcellation[C]//SUK HI, LIU M, YAN P, et al. International Workshop on Machine Learning in Medical Imaging. Cham: Springer, 2019: 409-416. DOI: 10.1007/978-3-030-32692-0_47
[12]
WEI J, SHI F, CUI Z M, et al. Consistent Segmentation of Longitudinal Brain MR Images with Spatio-Temporal Constrained Networks[C]//Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. Strasbourg, France, 2021: 89-98.
[13]
KLEIN A, TOURVILLE J. 101 labeled brain images and a consistent human cortical labeling protocol[J/OL]. Front Neurosci, 2012, 6: 171 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/23227001/. DOI: 10.3389/fnins.2012.00171.
[14]
HUA R, HUO Q, GAO Y Z, et al. Segmenting brain tumor using cascaded V-nets in multimodal MR images[J/OL]. Front Comput Neurosci, 2020, 14: 9 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/32116623/. DOI: 10.3389/fncom.2020.00009.
[15]
HAN M F, YAO G, ZHANG W H, et al. Segmentation of CT thoracic organs by multi-resolution VB-nets[J/OL]. SegTHOR@ISBI, 2019 [2024-03-07]. https://www.semanticscholar.org/paper/Segmentation-of-CT-Thoracic-Organs-by-VB-nets-Han-Yao/e8cf28abe20c9d62bce1548ea0f1551228ff8039.
[16]
LIU S, JIE C, ZHENG W M, et al. Investigation of underlying association between whole brain regions and Alzheimer's disease: a research based on an artificial intelligence model[J/OL]. Front Aging Neurosci, 2022, 14: 872530 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/35747447/. DOI: 10.3389/fnagi.2022.872530.
[17]
BROWN E M, PIERCE M E, CLARK D C, et al. Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners[J/OL]. NeuroImage, 2020, 210: 116563 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/31972281/. DOI: 10.1016/j.neuroimage.2020.116563.
[18]
GENG J T, YAN R, SHI J B, et al. Altered regional homogeneity in patients with somatic depression: a resting-state fMRI study[J/OL]. J Affect Disord, 2019, 246: 498-505 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/30599374/. DOI: 10.1016/j.jad.2018.12.066.
[19]
FANG J F, WANG Q, WANG B, et al. Amplitude of low-frequency oscillations in major depression as revealed by resting state functional magnetic resonance imaging[J]. J Clin Radiol, 2015, 34(7): 1030-1034. DOI: 10.13437/j.cnki.jcr.2015.07.002.
[20]
LIU X Y, HOU Z H, YIN Y Y, et al. CACNA1C gene rs11832738 polymorphism influences depression severity by modulating spontaneous activity in the right middle frontal gyrus in patients with major depressive disorder[J/OL]. Front Psychiatry, 2020, 11: 73 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/32161558/. DOI: 10.3389/fpsyt.2020.00073.
[21]
FRANK D, KAFKAS A. Expectation-driven novelty effects in episodic memory[J/OL]. Neurobiol Learn Mem, 2021, 183: 107466 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/34048914/. DOI: 10.1016/j.nlm.2021.107466.
[22]
ZHAO P, WANG X Y, WANG Q, et al. Altered fractional amplitude of low-frequency fluctuations in the superior temporal gyrus: a resting-state fMRI study in anxious depression[J/OL]. BMC Psychiatry, 2023, 23(1): 847 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/37974113/. DOI: 10.1186/s12888-023-05364-w.
[23]
MA Y, HE J K, GUO C L, et al. Correlation between low-frequency amplitude and serum inflammatory factors in resting-state functional magnetic resonance imaging in mild to moderate depression[J]. Chin J Magn Reson Imag, 2023, 14(9): 1-6, 18. DOI: 10.12015/issn.1674-8034.2023.09.001.
[24]
LI K, ZHANG M, ZHANG H S, et al. The spontaneous activity and functional network of the occipital cortex is correlated with state anxiety in healthy adults[J/OL]. Neurosci Lett, 2020, 715: 134596 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/31711976/. DOI: 10.1016/j.neulet.2019.134596.
[25]
WU F F, LU Q B, KONG Y, et al. A comprehensive overview of the role of visual cortex malfunction in depressive disorders: opportunities and challenges[J]. Neurosci Bull, 2023, 39(9): 1426-1438. DOI: 10.1007/s12264-023-01052-7.
[26]
GOLDMAN J G, BLEDSOE I O, MERKITCH D, et al. Corpus callosal atrophy and associations with cognitive impairment in Parkinson disease[J]. Neurology, 2017, 88(13): 1265-1272. DOI: 10.1212/WNL.0000000000003764.
[27]
PORCU M, COCCO L, MARROSU F, et al. Impact of corpus callosum integrity on functional interhemispheric connectivity and cognition in healthy subjects[J]. Brain Imaging Behav, 2024, 18(1): 141-158. DOI: 10.1007/s11682-023-00814-1.
[28]
LEECH R, SHARP D J. The role of the posterior cingulate cortex in cognition and disease[J]. Brain, 2014, 137(Pt 1): 12-32. DOI: 10.1093/brain/awt162.
[29]
WEI Y Y, HUANG N W, LIU Y, et al. Hippocampal and amygdalar morphological abnormalities in Alzheimer's disease based on three Chinese MRI datasets[J]. Curr Alzheimer Res, 2020, 17(13): 1221-1231. DOI: 10.2174/1567205018666210218150223.
[30]
FENG L L, JIN R, CAO C H, et al. Structural changes in the hippocampal subfields about cognitive decline of Alzheimer's disease[J]. J Clin Radiol, 2022, 41(10): 1819-1824. DOI: 10.13437/j.cnki.jcr.2022.10.025.
[31]
WANG Y J, XU S R, LUO J, et al. Effects of type 2 diabetes on cognitive function and hippocampus structure in patients with subjective cognitive decline[J]. Chin J Rehabil Med, 2024, 39(4): 505-514. DOI: 10.3969/j.issn.1001-1242.2024.04.008.
[32]
GERLEI K Z, BROWN C M, SÜRMELI G, et al. Deep entorhinal cortex: from circuit organization to spatial cognition and memory[J]. Trends Neurosci, 2021, 44(11): 876-887. DOI: 10.1016/j.tins.2021.08.003.
[33]
ROESLER R, MCGAUGH J L. The entorhinal cortex as a gateway for amygdala influences on memory consolidation[J/OL]. Neuroscience, 2022, 497: 86-96 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/35122874/. DOI: 10.1016/j.neuroscience.2022.01.023.
[34]
HUANG J T, ZHANG Z Z, GAMBETA E, et al. An orbitofrontal cortex to midbrain projection modulates hypersensitivity after peripheral nerve injury[J/OL]. Cell Rep, 2021, 35(4): 109033 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/33910011/. DOI: 10.1016/j.celrep.2021.109033.
[35]
CASTON R M, SMITH E H, DAVIS T S, et al. Characterization of spatiotemporal dynamics of binary and graded tonic pain in humans using intracranial recordings[J/OL]. PLoS One, 2023, 18(10): e0292808 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/37844101/. DOI: 10.1371/journal.pone.0292808.
[36]
MIYASHIRO S, YAMADA Y, MUTA T, et al. Activation of the orbitofrontal cortex by both meditation and exercise: a near-infrared spectroscopy study[J/OL]. PLoS One, 2021, 16(2): e0247685 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/33621250/. DOI: 10.1371/journal.pone.0247685.
[37]
ROLLS E T. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala[J]. Brain Struct Funct, 2023, 228(5): 1201-1257. DOI: 10.1007/s00429-023-02644-9.
[38]
FOLAND-ROSS L C, SACCHET M D, PRASAD G, et al. Cortical thickness predicts the first onset of major depression in adolescence[J/OL]. Int J Dev Neurosci, 2015, 46: 125-131 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/26315399/. DOI: 10.1016/j.ijdevneu.2015.07.007.
[39]
ROLLS E T, CHENG W, DU J N, et al. Functional connectivity of the right inferior frontal gyrus and orbitofrontal cortex in depression[J]. Soc Cogn Affect Neurosci, 2020, 15(1): 75-86. DOI: 10.1093/scan/nsaa014.
[40]
WU Y F, KONG L T, YANG A Q, et al. Gray matter volume reduction in orbitofrontal cortex correlated with plasma glial cell line-derived neurotrophic factor (GDNF) levels within major depressive disorder[J/OL]. Neuroimage Clin, 2023, 37: 103341 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/36739789/. DOI: 10.1016/j.nicl.2023.103341.
[41]
LAIRD K T, SIDDARTH P, KRAUSE-SORIO B, et al. Anxiety symptoms are associated with smaller insular and orbitofrontal cortex volumes in late-life depression[J/OL]. J Affect Disord, 2019, 256: 282-287 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/31200165/. DOI: 10.1016/j.jad.2019.05.066.
[42]
PALEJWALA A H, DADARIO N B, YOUNG I M, et al. Anatomy and white matter connections of the lingual gyrus and Cuneus[J/OL]. World Neurosurg, 2021, 151: e426-e437 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/33894399/. DOI: 10.1016/j.wneu.2021.04.050.
[43]
GE X H, WANG L Y, PAN L, et al. Amplitude of low-frequency fluctuation after a single-trigger pain in patients with classical trigeminal neuralgia[J/OL]. J Headache Pain, 2022, 23(1): 117 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/36076162/. DOI: 10.1186/s10194-022-01488-8.
[44]
QIU Z Q, ZHONG X K, YANG Q M, et al. Changes in spontaneous brain activity in patients with postherpetic neuralgia: an ALE Meta-analysis based on rs-fMRI data[J]. Chin J Magn Reson Imag, 2023, 14(9): 19-25. DOI: 10.12015/issn.1674-8034.2023.09.004.
[45]
YUAN J X, YU H, YU M L, et al. Altered spontaneous brain activity in major depressive disorder: an activation likelihood estimation meta-analysis[J/OL]. J Affect Disord, 2022, 314: 19-26 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/35750093/. DOI: 10.1016/j.jad.2022.06.014.
[46]
LI Y, WU S, YIN Y, et al. Altered resting state fALFF and their relationship with depressive symptom in first episode drug-naivemajor depressive disorder patients[J]. J Clin Radiol, 2022, 41(1): 12-17. DOI: 10.13437/j.cnki.jcr.2022.01.003.
[47]
DOTSON V M, BOGOIAN H R, GRADONE A M, et al. Subthreshold depressive symptoms relate to cuneus structure: thickness asymmetry and sex differences[J/OL]. J Psychiatr Res, 2021, 145: 144-147 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/34922098/. DOI: 10.1016/j.jpsychires.2021.12.013.
[48]
MARWOOD L, WISE T, PERKINS A M, et al. Meta-analyses of the neural mechanisms and predictors of response to psychotherapy in depression and anxiety[J/OL]. Neurosci Biobehav Rev, 2018, 95: 61-72 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/30278195/. DOI: 10.1016/j.neubiorev.2018.09.022.
[49]
MA X Y, LIU J, LIU T Y, et al. Altered resting-state functional activity in medication-naive patients with first-episode major depression disorder vs. healthy control: a quantitative meta-analysis[J/OL]. Front Behav Neurosci, 2019, 13: 89 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/31133831/. DOI: 10.3389/fnbeh.2019.00089.
[50]
YAO Z J, FU Y, WU J F, et al. Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients[J]. Brain Imaging Behav, 2020, 14(3): 653-667. DOI: 10.1007/s11682-018-0003-1.
[51]
BREMNER J D, FANI N, CHEEMA F A, et al. Effects of a mental stress challenge on brain function in coronary artery disease patients with and without depression[J]. Health Psychol, 2019, 38(10): 910-924. DOI: 10.1037/hea0000742.
[52]
ZHANG F F, PENG W, SWEENEY J A, et al. Brain structure alterations in depression: Psychoradiological evidence[J]. CNS Neurosci Ther, 2018, 24(11): 994-1003. DOI: 10.1111/cns.12835.
[53]
LIN S M, HAN Y, DUAN S Y, et al. Aberrant spontaneous brain activity in coronary heart disease using fractional amplitude of low-frequency fluctuations: a preliminary resting-state functional MRI study[J/OL]. Dis Markers, 2022, 2022: 2501886 [2024-03-07]. https://pubmed.ncbi.nlm.nih.gov/35692880/. DOI: 10.1155/2022/2501886.
[54]
WANG J, PENG H J, YANG Y Z, et al. Automatic classification of major depressive disorder with multi-modal magnetic resonance imaging[J]. Chin J Nerv Ment Dis, 2018, 44(10): 583-588. DOI: 10.3969/j.issn.1002-0152.2018.10.002.

PREV Degree centrality of brain network in immigrants at ultra-high altitudes: A resting state functional MRI study
NEXT Predictive value of cerebral blood tubule burden score for recurrent cerebrovascular events in patients with transient ischemic attack
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn