Share:
Share this content in WeChat
X
Clinical Article
Value of cardiac magnetic resonance feature tracking in the evaluation of patients with pulmonary hypertension due to left heart failure
JIA Han  QIAN Wen  ZHU Xiaomei  ZHOU Yanli  XU Yi  ZHU Yinsu 

Cite this article as: JIA H, QIAN W, ZHU X M, et al. Value of cardiac magnetic resonance feature tracking in the evaluation of patients with pulmonary hypertension due to left heart failure[J]. Chin J Magn Reson Imaging, 2024, 15(6): 72-78, 93. DOI:10.12015/issn.1674-8034.2024.06.011.


[Abstract] Objective To quantitatively evaluate the myocardial strain by cardiac magnetic resonance feature tracking (CMR-FT) and investigate the value of cardiac magnetic resonance (CMR) parameters of patients with pulmonary hypertension due to left heart failure (PH-LHF).Materials and Methods The clinical and CMR data of 215 patients with left heart failure (LHF) hospitalized between September 2018 and September 2020 were retrospectively analyzed, and they were divided into two groups, 129 patients with LHF and 86 patients with PH-LHF according to systolic pulmonary artery pressure (sPAP) measured by echocardiography. The baseline data and CMR parameters, including biventricular related volumetric and functional parameters, structural parameters and myocardial strain parameters were statistically analyzed. Univariate and multivariate logistic regression analysis were used to analyze the independent predictors of PH-LHF, and receiver operating characteristics (ROC) curves were plotted to evaluate the diagnostic value of CMR parameters.Results In patients with PH-LHF, left ventricular (LV) and right ventricular (RV) end diastolic volume index (EDVI), end systolic volume index (ESVI), right ventricular myocardial mass index (RVMMI), ventricular septal angle as well as left atrial structural parameters, including maximum of left atrial diameter (LADmax) and maximum of left atrial area (LA-amax) were higher than those in patients with LHF, while LV and RV ejection fraction (EF), right ventricular stroke volume index (RVSVI), right ventricular cardiac index (RVCI) were lower than those in patiets with LHF. LV global longitudinal strain (GLS), global circumferential strain (GCS) and the corresponding rate, RV GCS, left atrial active strain (εa), left atrial passive strain (εe), left atrial total strain (εs) were all decreased in patients with PH-LHF. Multivariate logistic regression analysis showed that RVEF, LV GCS, εa and LADmax were independent predictors of PH-LHF. ROC analysis showed that the AUC values of the clinical model, CMR model and combined model were 0.773, 0.777 and 0.828, respectively. The DeLong test showed that the diagnostic performance of the clinical model was improved after the addition of CMR parameters (0.773 vs. 0.828, P<0.05).Conclusions CMR-FT can quantitatively evaluate biventricular and left atrial strain, and reflect myocardial function in patients with PH-LHF. CMR has a certain clinical value in the assessment of patients with PH-LHF.
[Keywords] left heart failure;pulmonry hypertension;diagnostic value;cardiac magnetic resonance feature tracking;left ventricular strain;left atrial strain;magnetic resonance imaging

JIA Han1   QIAN Wen1   ZHU Xiaomei1   ZHOU Yanli1   XU Yi1   ZHU Yinsu2*  

1 Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

2 CT Room of Imaging Center, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China

Corresponding author: ZHU Y S, E-mail: zhuyinsu@njmu.edu.cn

Conflicts of interest   None.

Received  2024-01-18
Accepted  2024-05-13
DOI: 10.12015/issn.1674-8034.2024.06.011
Cite this article as: JIA H, QIAN W, ZHU X M, et al. Value of cardiac magnetic resonance feature tracking in the evaluation of patients with pulmonary hypertension due to left heart failure[J]. Chin J Magn Reson Imaging, 2024, 15(6): 72-78, 93. DOI:10.12015/issn.1674-8034.2024.06.011.

[1]
Pulmonary Embolism and Pulmonary Vascular Disease Group of Chinese Society of Respiratory Diseases, Pulmonary Embolism and Pulmonary Vascular Disease Working Committee of Respiratory Physician Branch of Chinese Medical Doctor Association, National Pulmonary Embolism and Pulmonary Vascular Disease Prevention and Treatment Collaboration Group, et al. China guidelines for the diagnosis and treatment of pulmonary hypertension 2021[J]. Natl Med J China, 2021, 101(1): 11-51. DOI: 10.3760/cma.j.cn112137-20201008-02778.
[2]
Heart Failure Group, Chinese Society of Cardiology, Chinese Medical Doctor Association, Editorial Committee of Chinese Journal of Cardiology. China guidelines for diagnosis and treatment of heart failure 2018[J]. Chin J Cardiol, 2018, 46(10): 760-789. DOI: 10.3760/cma.j.issn.0253-3758.2018.10.004.
[3]
DEVADOSS R, DHILLON G, SHARMA P, et al. Heartfelt breakthroughs: elevating quality of life with cutting-edge advances in heart failure treatment[J/OL]. J Cardiovasc Dev Dis, 2024, 11(1): 15 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/38248885/. DOI: 10.3390/jcdd11010015.
[4]
GUAZZI M, NAEIJE R. Pulmonary hypertension in heart failure: pathophysiology, pathobiology, and emerging clinical perspectives[J]. J Am Coll Cardiol, 2017, 69(13): 1718-1734. DOI: 10.1016/j.jacc.2017.01.051.
[5]
LIN Y Y, PANG L P, HUANG S A, et al. The prevalence and survival of pulmonary hypertension due to left heart failure: a retrospective analysis of a multicenter prospective cohort study[J/OL]. Front Cardiovasc Med, 2022, 9: 908215 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/35983183/. DOI: 10.3389/fcvm.2022.908215.
[6]
MOCUMBI A, HUMBERT M, SAXENA A, et al. Pulmonary hypertension[J/OL]. Nat Rev Dis Primers, 2024, 10(1): 1 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/38177157/. DOI: 10.1038/s41572-023-00486-7.
[7]
CONDLIFFE R, DORFMÜLLER P, GOPALAN D, et al. From the microscopic to the macroscopic: clinical-radiological-pathological correlation in pulmonary hypertension[J/OL]. Eur Respir Rev, 2023, 32(170): 230237 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/38123237/. DOI: 10.1183/16000617.0237-2023.
[8]
ARYAL S R, SHARIFOV O F, LLOYD S G. Emerging role of cardiovascular magnetic resonance imaging in the management of pulmonary hypertension[J/OL]. Eur Respir Rev, 2020, 29(156): 190138 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/32620585/. DOI: 10.1183/16000617.0138-2019.
[9]
SCHUSTER A, HOR K N, KOWALLICK J T, et al. Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications[J/OL]. Circ Cardiovasc Imaging, 2016, 9(4): e004077 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/27009468/. DOI: 10.1161/CIRCIMAGING.115.004077.
[10]
HE J, ZHAO S H, LU M J. Cardiac magnetic resonance feature tracking technique and its progress[J]. Chin J Magn Reson Imag, 2020, 11(6): 469-473. DOI: 10.12015/issn.1674-8034.2020.06.018.
[11]
WANG L L, FENG X Y, ZHANG T Y, et al. The application of left atrial strain derived from cardiac magnetic resonance in cardiac diseases[J]. Chin J Magn Reson Imag, 2023, 14(3): 179-183. DOI: 10.12015/issn.1674-8034.2023.03.033.
[12]
LI R, HUANG Y X, CHEN Z X, et al. Evaluation of right ventricular strains by cardiac magnetic resonance feature tracking[J]. Chin J Magn Reson Imag, 2021, 12(10): 98-100, 104. DOI: 10.12015/issn.1674-8034.2021.10.025.
[13]
ROTHENBURGER M, WICHTER T, SCHMID C, et al. Aminoterminal pro type B natriuretic peptide as a predictive and prognostic marker in patients with chronic heart failure[J]. J Heart Lung Transplant, 2004, 23(10): 1189-1197. DOI: 10.1016/j.healun.2004.07.006.
[14]
SCHUPP T, ABUMAYYALEH M, WEIDNER K, et al. Diagnostic and prognostic value of aminoterminal prohormone of brain natriuretic peptide in heart failure with mildly reduced ejection fraction stratified by the degree of renal dysfunction[J/OL]. J Clin Med, 2024, 13(2): 489 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/38256622/. DOI: 10.3390/jcm13020489.
[15]
VACHIÉRY J L, TEDFORD R J, ROSENKRANZ S, et al. Pulmonary hypertension due to left heart disease[J/OL]. Eur Respir J, 2019, 53(1): 1801897 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/30545974/. DOI: 10.1183/13993003.01897-2018.
[16]
GOH Z M, BALASUBRAMANIAN N, ALABED S, et al. Right ventricular remodelling in pulmonary arterial hypertension predicts treatment response[J]. Heart, 2022, 108(17): 1392-1400. DOI: 10.1136/heartjnl-2021-320733.
[17]
BOSCH L, LAM C S P, GONG L L, et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction[J]. Eur J Heart Fail, 2017, 19(12): 1664-1671. DOI: 10.1002/ejhf.873.
[18]
LIN K, SARNARI R, PATHROSE A, et al. Cine magnetic resonance imaging detects shorter cardiac rest periods in postcapillary pulmonary hypertension[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(4): 446-453. DOI: 10.1093/ehjci/jeac113.
[19]
CHEN Z W, CHUNG Y W, CHENG J F, et al. Right ventricular-vascular uncoupling predicts pulmonary hypertension in clinically diagnosed heart failure with preserved ejection fraction[J/OL]. J Am Heart Assoc, 2024, 13(1): e030025 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/38156457/. DOI: 10.1161/JAHA.123.030025.
[20]
JOHNS C S, WILD J M, RAJARAM S, et al. Identifying at-risk patients with combined pre- and postcapillary pulmonary hypertension using interventricular septal angle at cardiac MRI[J]. Radiology, 2018, 289(1): 61-68. DOI: 10.1148/radiol.2018180120.
[21]
SIMPSON C E, DAMICO R L, KOLB T M, et al. Ventricular mass as a prognostic imaging biomarker in incident pulmonary arterial hypertension[J/OL]. Eur Respir J, 2019, 53(4): 1802067 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/30705128/. DOI: 10.1183/13993003.02067-2018.
[22]
JIANG S, LI Y C, ZHAO X X. Research progress in application of CMR-FT technology in myocardial diseases[J]. Med Recapitul, 2019, 25(11): 2263-2267, 2274. DOI: 10.3969/j.issn.1006-2084.2019.19.035.
[23]
MA H Y, XIE G Y, TAO J, et al. Identification of patients with nonischemic dilated cardiomyopathy at risk of malignant ventricular arrhythmias: insights from cardiac magnetic resonance feature tracking[J/OL]. BMC Cardiovasc Disord, 2024, 24(1): 29 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/38172720/. DOI: 10.1186/s12872-023-03655-4.
[24]
SALMANIPOUR A, GHAFFARI JOLFAYI A, SABET KHADEM N, et al. The predictive value of cardiac MRI strain parameters in hypertrophic cardiomyopathy patients with preserved left ventricular ejection fraction and a low fibrosis burden: a retrospective cohort study[J/OL]. Front Cardiovasc Med, 2023, 10: 1246759 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/37781305/. DOI: 10.3389/fcvm.2023.1246759.
[25]
XU J, YANG W J, ZHAO S H, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[26]
CLAUS P, OMAR A M S, PEDRIZZETTI G, et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications[J]. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460. DOI: 10.1016/j.jcmg.2015.11.001.
[27]
SANZ J, SÁNCHEZ-QUINTANA D, BOSSONE E, et al. Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(12): 1463-1482. DOI: 10.1016/j.jacc.2018.12.076.
[28]
DONAL E, BERGEROT C, THIBAULT H, et al. Influence of afterload on left ventricular radial and longitudinal systolic functions: a two-dimensional strain imaging study[J]. Eur J Echocardiogr, 2009, 10(8): 914-921. DOI: 10.1093/ejechocard/jep095.
[29]
CHEN H, BRUNNER F J, ÖZDEN C, et al. Left ventricular myocardial strain responding to chronic pressure overload in patients with resistant hypertension evaluated by feature-tracking CMR[J]. Eur Radiol, 2023, 33(9): 6278-6289. DOI: 10.1007/s00330-023-09595-z.
[30]
LING X L, LIU C H, ZHAO K Y, et al. A study on biventricular myocardial strain characteristics of amateur marathon runners based on cardiac MR feature tracking technique[J]. Chin J Radiol, 2023, 57(12): 1278-1283. DOI: 10.3760/cma.j.cn112149-20230918-00206.
[31]
FANG H, WANG J, SHI R, et al. Biventricular dysfunction and ventricular interdependence in patients with pulmonary hypertension: a 3.0-T cardiac MRI feature tracking study[J/OL]. J Magn Reson Imaging, 2023 [2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/37864419/. DOI: 10.1002/jmri.29044.
[32]
QUEREJETA ROCA G, CAMPBELL P, CLAGGETT B, et al. Impact of lowering pulmonary vascular resistance on right and left ventricular deformation in pulmonary arterial hypertension[J]. Eur J Heart Fail, 2015, 17(1): 63-73. DOI: 10.1002/ejhf.177.
[33]
BARBIER P, SOLOMON S B, SCHILLER N B, et al. Left atrial relaxation and left ventricular systolic function determine left atrial reservoir function[J]. Circulation, 1999, 100(4): 427-436. DOI: 10.1161/01.cir.100.4.427.
[34]
LIU W Y, ZHU Y S, FENG C J, et al. Early cardiac involvement detected by cardiac magnetic resonance feature tracking in idiopathic inflammatory myopathy with preserved ejection fraction[J]. Int J Cardiovasc Imaging, 2023, 39(1): 183-194. DOI: 10.1007/s10554-022-02715-8.
[35]
HAN J C, TABERNER A J, LOISELLE D S, et al. Cardiac efficiency and Starling's Law of the Heart[J]. J Physiol, 2022, 600(19): 4265-4285. DOI: 10.1113/JP283632.

PREV Predictive value of cerebral blood tubule burden score for recurrent cerebrovascular events in patients with transient ischemic attack
NEXT Radiomics based on multiparametric MRI for prediction of breast cancers sensitive to neoadjuvant chemotherapy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn