Share:
Share this content in WeChat
X
Clinical Article
Radiomics based on multiparametric MRI for prediction of breast cancers sensitive to neoadjuvant chemotherapy
ZHAO Qing  SU Tong  DAI Ting  WANG Rui  ZHANG Shuo  TAO Yang  LÜ Fajin  OUYANG Zubin 

Cite this article as: ZHAO Q, SU T, DAI T, et al. Radiomics based on multiparametric MRI for prediction of breast cancers sensitive to neoadjuvant chemotherapy[J]. Chin J Magn Reson Imaging, 2024, 15(6): 79-86. DOI:10.12015/issn.1674-8034.2024.06.012.


[Abstract] Objective To predict the sensitivity of breast cancer to neoadjuvant therapy (NAT) based on multiparametric magnetic resonance imaging (mpMRI) combined with clinical variables.Materials and Methods A total of 248 patients with pathologically confirmed breast cancer were enrolled in this study and randomly divided into a training group (173 cases) and a validation group (75 cases) in a 7∶3 ratio. All patients underwent mpMRI examination before NAT. The Miller-Payne (MP) grading system was used to assess the effectiveness of NAT, with MP grades 1-2 considered as insensitive to NAT response, and MP grades 3-5 as sensitive. Based on dynamic contrast-enhanced MRI (DCE-MRI), T2WI, and diffusion weighted imaging (DWI) sequence images to delineate tumor regions, to extract and filter imaging radiomics features. A radiomics score (Rad-score) was derived using the least absolute shrinkage and selection operator algorithm. Univariate logistic regression was ultilized to analyze clinical and pathological variables, including age, menstrual status, molecular subtype, chemotherapy regimen, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2), and tumor proliferative index Ki-67. Significant clinical and pathological variables, along with the Rad-score, were included in the multivariate logistic regression analysis to establish an radiomics-clinical combined model and nomogram. The predictive performance of model was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).Results Univariate logistic regression analysis showed that Rad-score (P<0.001), ER expression status (P=0.001), and chemotherapy regimen (P=0.031) were significantly associated with the sensitivity of NAT in breast cancer. The AUC of the radiomics-clinical combined model constructed by Rad-score with ER expression status and chemotherapy regimen was 0.845 (95% CI: 0.780-0.910) in the training cohort, and 0.820 (95% CI: 0.718-0.923) in the validation cohort. The nomogram in prediction of breast cancer susceptibility to NAT had a higher degree of differentiation (C index: training queue is 0.842, validation queue is 0.822), the calibration curve shows good consistency. The clinical decision curve showed that the nomogram had a high overall net benefit.Conclusions The integration of radiomics and clinical variables and nomogram show promise in predicting sensitivity of breast cancer to neoadjuvant therapy.
[Keywords] breast cancer;radiomics;multi-parametric magnetic resonance imaging;magnetic resonance imaging;neoadjuvant therapy;sensitivity

ZHAO Qing1   SU Tong1   DAI Ting2   WANG Rui3   ZHANG Shuo1   TAO Yang1   LÜ Fajin1   OUYANG Zubin1*  

1 Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

2 Department of Radiology, Jiangbei Traditional Chinese Medicine Hospital, Chongqing 400020, China

3 Department of Radiology, Hechuan District People's Hospital, Chongqing 401519, China

Corresponding author: OUYANG Z B, E-mail: ouyangzubin@aliyun.com

Conflicts of interest   None.

Received  2023-12-30
Accepted  2024-06-03
DOI: 10.12015/issn.1674-8034.2024.06.012
Cite this article as: ZHAO Q, SU T, DAI T, et al. Radiomics based on multiparametric MRI for prediction of breast cancers sensitive to neoadjuvant chemotherapy[J]. Chin J Magn Reson Imaging, 2024, 15(6): 79-86. DOI:10.12015/issn.1674-8034.2024.06.012.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
KORDE L A, SOMERFIELD M R, CAREY L A, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline[J]. J Clin Oncol, 2021, 39(13): 1485-1505. DOI: 10.1200/JCO.20.03399.
[3]
WANG H, MAO X Y. Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer[J/OL]. Drug Des Devel Ther, 2020, 14: 2423-2433 [2023-12-29]. DOI: 10.2147/DDDT.S253961.
[4]
CRIVELLI P, LEDDA R E, PARASCANDOLO N, et al. A new challenge for radiologists: radiomics in breast cancer[J/OL]. Biomed Res Int, 2018, 2018: 6120703 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/32606609/. DOI: 10.1155/2018/6120703.
[5]
AN Y Y, KIM S H, KANG B J, et al. MRI volume measurements compared with the RECIST 1.1 for evaluating the response to neoadjuvant chemotherapy for mass-type lesions[J]. Breast Cancer, 2014, 21(3): 316-324. DOI: 10.1007/s12282-012-0388-4.
[6]
JEH S K, KIM S H, KANG B J. Comparison of the diagnostic performance of response evaluation criteria in solid tumor 1.0 with response evaluation criteria in solid tumor 1.1 on MRI in advanced breast cancer response evaluation to neoadjuvant chemotherapy[J]. Korean J Radiol, 2013, 14(1): 13-20. DOI: 10.3348/kjr.2013.14.1.13.
[7]
GRIMALDI S, TERROIR M, CARAMELLA C. Advances in oncological treatment: limitations of RECIST 1.1 criteria[J]. Q J Nucl Med Mol Imaging, 2018, 62(2): 129-139. DOI: 10.23736/S1824-4785.17.03038-2.
[8]
THERASSE P, ARBUCK S G, EISENHAUER E A, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada[J]. J Natl Cancer Inst, 2000, 92(3): 205-216. DOI: 10.1093/jnci/92.3.205.
[9]
CORTAZAR P, ZHANG L J, UNTCH M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-172. DOI: 10.1016/S0140-6736(13)62422-8.
[10]
MCANENA P, MOLONEY B M, BROWNE R, et al. A radiomic model to classify response to neoadjuvant chemotherapy in breast cancer[J/OL]. BMC Med Imaging, 2022, 22(1): 225 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/36564734/. DOI: 10.1186/s12880-022-00956-6.
[11]
LI C C, LU N, HE Z F, et al. A noninvasive tool based on magnetic resonance imaging radiomics for the preoperative prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J]. Ann Surg Oncol, 2022, 29(12): 7685-7693. DOI: 10.1245/s10434-022-12034-w.
[12]
TAHMASSEBI A, WENGERT G J, HELBICH T H, et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients[J]. Invest Radiol, 2019, 54(2): 110-117. DOI: 10.1097/RLI.0000000000000518.
[13]
PENG S Y, CHEN L Q, TAO J, et al. Radiomics analysis of multi-phase DCE-MRI in predicting tumor response to neoadjuvant therapy in breast cancer[J/OL]. Diagnostics, 2021, 11(11): 2086 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/34829433/. DOI: 10.3390/diagnostics11112086.
[14]
AVANZO M, STANCANELLO J, NAQA I EL. Beyond imaging: the promise of radiomics[J/OL]. Phys Med, 2017, 38: 122-139 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/28595812/. DOI: 10.1016/j.ejmp.2017.05.071.
[15]
GUO L C, DU S Y, GAO S, et al. Delta-radiomics based on dynamic contrast-enhanced MRI predicts pathologic complete response in breast cancer patients treated with neoadjuvant chemotherapy[J/OL]. Cancers, 2022, 14(14): 3515 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/35884576/. DOI: 10.3390/cancers14143515.
[16]
CAVALLO MARINCOLA B, TELESCA M, ZACCAGNA F, et al. Can unenhanced MRI of the breast replace contrast-enhanced MRI in assessing response to neoadjuvant chemotherapy?[J]. Acta Radiol, 2019, 60(1): 35-44. DOI: 10.1177/0284185118773512.
[17]
CHU W, JIN W W, LIU D H, et al. Diffusion-weighted imaging in identifying breast cancer pathological response to neoadjuvant chemotherapy: a meta-analysis[J]. Oncotarget, 2018, 9(6): 7088-7100. DOI: 10.18632/oncotarget.23195.
[18]
GU Y L, PAN S M, REN J, et al. Role of magnetic resonance imaging in detection of pathologic complete remission in breast cancer patients treated with neoadjuvant chemotherapy: a meta-analysis[J]. Clin Breast Cancer, 2017, 17(4): 245-255. DOI: 10.1016/j.clbc.2016.12.010.
[19]
LIANG X H, YU X Y, GAO T H. Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis[J/OL]. Eur J Radiol, 2022, 150: 110247 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/35290910/. DOI: 10.1016/j.ejrad.2022.110247.
[20]
BROWN J R, DIGIOVANNA M P, KILLELEA B, et al. Quantitative assessment Ki-67 score for prediction of response to neoadjuvant chemotherapy in breast cancer[J]. Lab Invest, 2014, 94(1): 98-106. DOI: 10.1038/labinvest.2013.128.
[21]
YOSHIOKA T, HOSODA M, YAMAMOTO M, et al. Prognostic significance of pathologic complete response and Ki67 expression after neoadjuvant chemotherapy in breast cancer[J]. Breast Cancer, 2015, 22(2): 185-191. DOI: 10.1007/s12282-013-0474-2.
[22]
RAPHAEL J, GANDHI S, LI N, et al. The role of quantitative estrogen receptor status in predicting tumor response at surgery in breast cancer patients treated with neoadjuvant chemotherapy[J]. Breast Cancer Res Treat, 2017, 164(2): 285-294. DOI: 10.1007/s10549-017-4269-6.
[23]
GRADISHAR W J, ANDERSON B O, ABRAHAM J, et al. Breast cancer, version 3.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(4): 452-478. DOI: 10.6004/jnccn.2020.0016.
[24]
Expert consensus on pathological diagnosis of neoadjuvant therapy for breast cancer (2020 version). Expert panel consensus on pathological diagnosis of breast cancer with neoadjuvant therapy, the 2020 version[J]. Chin J Pathol, 2020, 49(4): 296-304. DOI: 10.3760/cma.j.cn112151-20200102-00007.
[25]
XIONG Q Q, ZHOU X Z, LIU Z Y, et al. Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy[J]. Clin Transl Oncol, 2020, 22(1): 50-59. DOI: 10.1007/s12094-019-02109-8.
[26]
SCHEGERIN M, TOSTESON A N A, KAUFMAN P A, et al. Prognostic imaging in neoadjuvant chemotherapy of locally-advanced breast cancer should be cost-effective[J]. Breast Cancer Res Treat, 2009, 114(3): 537-547. DOI: 10.1007/s10549-008-0025-2.
[27]
WANG W, LIU Y H, ZHANG H, et al. Prognostic value of residual cancer burden and Miller-Payne system after neoadjuvant chemotherapy for breast cancer[J]. Gland Surg, 2021, 10(12): 3211-3221. DOI: 10.21037/gs-21-608.
[28]
WANG L Y, LUO R Z, LU Q Y, et al. Miller-payne grading and 70-gene signature are associated with prognosis of hormone receptor-positive, human epidermal growth factor receptor 2-negative early-stage breast cancer after neoadjuvant chemotherapy[J/OL]. Front Oncol, 2021, 11: 735670 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/34631568/. DOI: 10.3389/fonc.2021.735670.
[29]
ZHENG D, HE X J, JING J. Overview of artificial intelligence in breast cancer medical imaging[J/OL]. J Clin Med, 2023, 12(2): 419 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/36675348/. DOI: 10.3390/jcm12020419.
[30]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 57 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/28521821/. DOI: 10.1186/s13058-017-0846-1.
[31]
EUN N L, KANG D, SON E J, et al. Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer[J]. Radiology, 2020, 294(1): 31-41. DOI: 10.1148/radiol.2019182718.
[32]
GRANZIER R W Y, IBRAHIM A, PRIMAKOV S P, et al. MRI-based radiomics analysis for the pretreatment prediction of pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients: a multicenter study[J/OL]. Cancers, 2021, 13(10): 2447 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/34070016/. DOI: 10.3390/cancers13102447.
[33]
YOSHIDA K, KAWASHIMA H, KANNON T, et al. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI[J/OL]. Magn Reson Imaging, 2022, 92: 19-25 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/35636571/. DOI: 10.1016/j.mri.2022.05.018.
[34]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[35]
LI Y J, ZHANG J, WANG B, et al. Development and validation of a nomogram to predict the probability of breast cancer pathologic complete response after neoadjuvant chemotherapy: a retrospective cohort study[J/OL]. Front Surg, 2022, 9: 878255 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/35756481/. DOI: 10.3389/fsurg.2022.878255.
[36]
LIM E, TARULLI G, PORTMAN N, et al. Pushing estrogen receptor around in breast cancer[J/OL]. Endocr Relat Cancer, 2016, 23(12): T227-T241 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/27729416/. DOI: 10.1530/ERC-16-0427.
[37]
HILL D A, BARRY M, WIGGINS C, et al. Estrogen receptor quantitative measures and breast cancer survival[J]. Breast Cancer Res Treat, 2017, 166(3): 855-864. DOI: 10.1007/s10549-017-4439-6.
[38]
PARK Y R, LEE J, JUNG J H, et al. Absence of estrogen receptor is associated with worse oncologic outcome in patients who were received neoadjuvant chemotherapy for breast cancer[J]. Asian J Surg, 2020, 43(3): 467-475. DOI: 10.1016/j.asjsur.2019.05.010.
[39]
PAAKKOLA N M, KARAKATSANIS A, MAURI D, et al. The prognostic and predictive impact of low estrogen receptor expression in early breast cancer: a systematic review and meta-analysis[J/OL]. ESMO Open, 2021, 6(6): 100289 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/34678571/. DOI: 10.1016/j.esmoop.2021.100289.
[40]
REINERT T, CASCELLI F, DE RESENDE C A A, et al. Clinical implication of low estrogen receptor (ER-low) expression in breast cancer[J/OL]. Front Endocrinol, 2022, 13: 1015388 [2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/36506043/. DOI: 10.3389/fendo.2022.1015388.
[41]
TANG S C, WANG K, ZHENG K, et al. Clinical and pathological response to neoadjuvant chemotherapy with different chemotherapy regimens predicts the outcome of locally advanced breast cancer[J]. Gland Surg, 2020, 9(5): 1415-1427. DOI: 10.21037/gs-20-209.

PREV Value of cardiac magnetic resonance feature tracking in the evaluation of patients with pulmonary hypertension due to left heart failure
NEXT Study on the differential diagnostic efficacy of Kaiser score and apparent diffusion coefficient values for benign and malignant breast lesions during lactation
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn