Share:
Share this content in WeChat
X
Review
Advances in the application of susceptibility weighted imaging in brain gliomas
YU Xudong  TAN Yan 

Cite this article as: YU X D, TAN Y. Advances in the application of susceptibility weighted imaging in brain gliomas[J]. Chin J Magn Reson Imaging, 2024, 15(6): 133-137. DOI:10.12015/issn.1674-8034.2024.06.020.


[Abstract] Gliomas are the most common malignant tumors of the central nervous system. Their differential diagnosis, preoperative pathological grading, genetic typing, preoperative planning, and postoperative efficacy evaluation are of great significance for the implementation of personalized treatment. Susceptibility weighted imaging (SWI) is a technology that uses the differences in magnetic susceptibility between different tissues to create images, which can clearly show draining veins and hemorrhagic products within gliomas. This review introduces the basic technical principles of SWI, as well as its applications and research progress in the diagnosis, treatment, and radiomics of gliomas, providing more reference points for the diagnosis, treatment, and prognosis assessment of gliomas.
[Keywords] brain glioma;susceptibility weighted imaging;magnetic resonance imaging;radiomics;intra-tumoral susceptibility signals

YU Xudong1   TAN Yan2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: TAN Y, E-mail: tanyan123456@sina.com

Conflicts of interest   None.

Received  2024-03-03
Accepted  2024-06-03
DOI: 10.12015/issn.1674-8034.2024.06.020
Cite this article as: YU X D, TAN Y. Advances in the application of susceptibility weighted imaging in brain gliomas[J]. Chin J Magn Reson Imaging, 2024, 15(6): 133-137. DOI:10.12015/issn.1674-8034.2024.06.020.

[1]
MARTÍN-NOGUEROL T, SANTOS-ARMENTIA E, RAMOS A, et al. An update on susceptibility-weighted imaging in brain gliomas[J/OL]. Eur Radiol, 2024 [2024-03-03]. https://link.springer.com/article/10.1007/s00330-024-10703-w. DOI: 10.1007/s00330-024-10703-w.
[2]
VAN DEN BENT M J, GEURTS M, FRENCH P J, et al. Primary brain tumours in adults[J]. Lancet, 2023, 402(10412): 1564-1579. DOI: 10.1016/S0140-6736(23)01054-1.
[3]
RUBIN A, WASZCZUK Ł, TRYBEK G, et al. Application of susceptibility weighted imaging (SWI) in diagnostic imaging of brain pathologies - a practical approach[J/OL]. Clin Neurol Neurosurg, 2022, 221: 107368 [2024-03-03]. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(23)01054-1/abstract. DOI: 10.1016/S0140-6736(23)01054-1.
[4]
LIU S, BUCH S, CHEN Y, et al. Susceptibility-weighted imaging: current status and future directions[J]. NMR Biomed, 2017, 30(4): 383-390. DOI: 10.1111/jon.12360.
[5]
MA X D, XIA W H, ZHANG Y K. The Application of Susceptibility Weighted Imaging in Cerebral Hemorrhage[J]. Chin J Stroke, 2022, 17(8): 901-904. DOI: 10.3969/j.issn.1673-5765.2022.08.017.
[6]
ZHANG Q H, TAN Y. MRI quantitative susceptibility mapping: research advances in central nervous system[J]. Chin J Magn Reson Imaging, 2022, 13(1): 151-153, 170. DOI: 10.12015/issn.1674-8034.2022.01.035.
[7]
JEON B U, YU I K, KIM T K, et al. Susceptibility-weighted imaging as a distinctive imaging technique for providing complementary information for precise diagnosis of neurologic disorder[J]. Taehan Yongsang Uihakhoe Chi, 2021, 82(1): 99-115. DOI: 10.3348/jksr.2020.0054.
[8]
HSU C C, WATKINS T W, KWAN G N, et al. Susceptibility-weighted imaging of glioma: Update on current imaging status and future directions[J]. J Neuroimaging, 2016, 26(4): 383-390. DOI: 10.1111/jon.12360.
[9]
PARK M J, KIM H S, JAHNG G H, et al. Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging[J]. AJNR Am J Neuroradiol, 2009, 30(7): 1402-1408. DOI: 10.3174/ajnr.A1593.
[10]
TU J Q , ZHU F P , LI Y X. Advances in the application of susceptibility-weighted imaging in the diagnosis and treatment of brain gliomas[J]. International Journal of Medical Radiology, 2023, 46(4): 414-416. DOI: 10.19300/j.2023.Z20320.
[11]
SZEKERES D, JETTY S N, SONI N. The role of multiparametric MRI in diagnosing and grading glioma[J]. Neurol India, 2023, 71(6): 1274-1275. DOI: 10.4103/0028-3886.391347.
[12]
GU S, QIAN J, YANG L, et al. Multiparametric MRI radiomics for the differentiation of brain glial cell hyperplasia from low-grade glioma[J/OL]. BMC Med Imaging, 2023, 23(1): 116 [2024-05-28]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-023-01086-3. DOI: 10.1186/s12880-023-01086-3.
[13]
YANG S H, HONG C T, TSAI F Y, et al. Anatomical relationships between medullary veins and three types of deep-seated malignant brain tumors as detected by susceptibility-weighted imaging[J]. J Chin Med Assoc, 2020, 83(2): 164-169. DOI: 10.1097/JCMA.0000000000000235.
[14]
BOZDAĞ M, ER A, ÇINKOOĞLU A, et al. Diagnostic role of apparent diffusion coefficient combined with intratumoral susceptibility signals in differentiating high-grade gliomas from brain metastases[J]. Neuroradiol J, 2021, 34(3): 169-179. DOI: 10.1177/1971400920980164.
[15]
WANG W W, NIU T L, MIAO Y W, et al. SWI study on astrocytoma grading and differential diagnosis of astrocytoma and solitary metastases[J]. Chin J Magn Reson Imaging, 2015, 6(4): 246-252. DOI: 10.3969/j.issn.1674-8034.2015.04.002.
[16]
CHENG G, ZHANG J. Imaging features (CT, MRI, MRS, and PET/CT) of primary central nervous system lymphoma in immunocompetent patients[J]. Neurol Sci, 2019, 40(3): 535-542. DOI: 10.1007/s10072-018-3669-7.
[17]
DU X, HE Y, LIN W. Diagnostic accuracy of the diffusion-weighted imaging method used in association with the apparent diffusion coefficient for differentiating between primary central nervous system lymphoma and high-grade glioma: Systematic review and meta-analysis[J/OL]. Front Neurol, 2022, 13: 882334 [2024-05-28]. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.882334/full. DOI: 10.3389/fneur.2022.882334.
[18]
BHATTACHARJEE R, GUPTA M, SINGH T, et al. Role of intra-tumoral vasculature imaging features on susceptibility weighted imaging in differentiating primary central nervous system lymphoma from glioblastoma: a multiparametric comparison with pathological validation[J]. Neuroradiology, 2022, 64(9): 1801-1818. DOI: 10.1007/s00234-022-02946-5.
[19]
SAINI J, KUMAR GUPTA P, AWASTHI A, et al. Multiparametric imaging-based differentiation of lymphoma and glioblastoma: using T1-perfusion, diffusion, and susceptibility-weighted MRI[J/OL]. Clin Radiol, 2018, 73(11): 986.e7-e15 [2024-05-28]. https://www.clinicalradiologyonline.net/article/S0009-9260(18)30395-7/abstract. DOI: 10.1016/j.crad.2018.07.107.
[20]
FIGARELLA-BRANGER D, APPAY R, METAIS A, et al. The 2021 WHO classification of tumours of the central nervous system[J]. Ann Pathol, 2022, 42(5): 367-382. DOI: 10.1016/j.annpat.2021.11.005.
[21]
HANGEL G, SCHMITZ-ABECASSIS B, SOLLMANN N, et al. Advanced MR techniques for preoperative glioma characterization: Part 2[J]. J Magn Reson Imaging, 2023, 57(6): 1676-1695. DOI: 10.1002/jmri.28663.
[22]
YANG X, XING Z, SHE D, et al. Grading of IDH-mutant astrocytoma using diffusion, susceptibility and perfusion-weighted imaging[J/OL]. BMC Med Imaging, 2022, 22(1): 105 [2024-05-29]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00832-3. DOI: 10.1186/s12880-022-00832-3.
[23]
SAINI J, GUPTA P K, SAHOO P, et al. Differentiation of grade Ⅱ/Ⅲ and grade Ⅳ glioma by combining "T1 contrast-enhanced brain perfusion imaging" and susceptibility-weighted quantitative imaging[J]. Neuroradiology, 2018, 60(1): 43-50. DOI: 10.1007/s00234-017-1942-8.
[24]
XU J, XU H, ZHANG W, et al. Contribution of susceptibility- and diffusion-weighted magnetic resonance imaging for grading gliomas[J]. Exp Ther Med, 2018, 15(6): 5113-5118. DOI: 10.3892/etm.2018.6017.
[25]
BHATTACHARJEE R, GUPTA R K, PATIR R, et al. Quantitative vs. semiquantitative assessment of intratumoral susceptibility signals in patients with different grades of glioma[J]. J Magn Reson Imaging, 2020, 51(1): 225-233. DOI: 10.1002/jmri.26786.
[26]
GAUDINO S, MARZIALI G, PEZZULLO G, et al. Role of susceptibility-weighted imaging and intratumoral susceptibility signals in grading and differentiating pediatric brain tumors at 1.5 T: a preliminary study[J]. Neuroradiology, 2020, 62(6): 705-713. DOI: 10.1007/s00234-020-02386-z.
[27]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[28]
YANG X, LIN Y, XING Z, et al. Predicting 1p/19q codeletion status using diffusion-, susceptibility-, perfusion-weighted, and conventional MRI in IDH-mutant lower-grade gliomas[J]. Acta Radiol, 2021, 62(12): 1657-1665. DOI: 10.1177/0284185120973624.
[29]
KONG L W, CHEN J, ZHAO H, et al. Intratumoral susceptibility signals reflect biomarker status in gliomas[J/OL]. Sci Rep, 2019, 9(1): 17080 [2024-05-28]. https://www.nature.com/articles/s41598-019-53629-w. DOI: 10.1038/s41598-019-53629-w.
[30]
MATSUMAE M, NISHIYAMA J, KURODA K. Intraoperative MR Imaging during Glioma Resection[J]. Magn Reson Med Sci, 2022, 21(1): 148-167. DOI: 10.2463/mrms.rev.2021-0116.
[31]
HORI M, ISHIGAME K, KABASAWA H, et al. Precontrast and postcontrast susceptibility-weighted imaging in the assessment of intracranial brain neoplasms at 1.5 T[J]. Jpn J Radiol, 2010, 28(4): 299-304. DOI: 10.1007/s11604-010-0427-z.
[32]
FAHRENDORF D, SCHWINDT W, WöLFER J, et al. Benefits of contrast-enhanced SWI in patients with glioblastoma multiforme[J]. Eur Radiol, 2013, 23(10): 2868-2879. DOI: 10.1007/s00330-013-2895-x.
[33]
BLASIAK B, LANDRY J, TYSON R, et al. Molecular susceptibility weighted imaging of the glioma rim in a mouse model[J]. J Neurosci Methods, 2014, 226: 132-138. DOI: 10.1016/j.jneumeth.2014.01.034.
[34]
TANJI M, MINEHARU Y, SAKATA A, et al. High intratumoral susceptibility signal grade on susceptibility-weighted imaging: a risk factor for hemorrhage after stereotactic biopsy[J]. J Neurosurg, 2023, 138(1): 120-127. DOI: 10.3171/2022.4.JNS212505.
[35]
HOU X, DU H, DENG Y, et al. Gut microbiota mediated the individualized efficacy of Temozolomide via immunomodulation in glioma[J/OL]. J Transl Med, 2023, 21(1): 198 [2024-05-29]. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04042-5. DOI: 10.1186/s12967-023-04042-5.
[36]
VAN LEYEN K, ROELCKE U, GRUBER P, et al. Susceptibility and tumor size changes during the time course of standard treatment in recurrent glioblastoma[J]. J Neuroimaging, 2019, 29(5): 645-649. DOI: 10.1111/jon.12631.
[37]
JIANG S, EBERHART C G, LIM M, et al. Identifying recurrent malignant glioma after treatment using amide proton transfer-weighted MR imaging: A validation study with image-guided stereotactic biopsy[J]. Clin Cancer Res, 2019, 25(2): 552-561. DOI: 10.1158/1078-0432.CCR-18-1233.
[38]
BODENSOHN R, FORBRIG R, QUACH S, et al. MRI-based contrast clearance analysis shows high differentiation accuracy between radiation-induced reactions and progressive disease after cranial radiotherapy[J/OL]. ESMO Open, 2022, 7(2): 100424 [2024-05-29]. https://www.esmoopen.com/article/S2059-7029(22)00045-X/fulltext. DOI: 10.1016/j.esmoop.2022.100424.
[39]
QIN J, YU Z, YAO Y, et al. Susceptibility-weighted imaging cannot distinguish radionecrosis from recurrence in brain metastases after radiotherapy: a comparison with high-grade gliomas[J/OL]. Clin Radiol, 2022, 77(8): e585-e591 [2024-05-30]. https://www.clinicalradiologyonline.net/article/S0009-9260(22)00234-3/abstract. DOI: 10.1016/j.crad.2022.05.005,
[40]
LIANG F R, YANG R M. Advancement in MRI radiomics for preoperative glioma grading prediction[J]. Guangzhou Medical Journal, 2024, 55(3): 221-230. DOI: 10.3969/j.issn.1000-8535.2024.03.002
[41]
BRANCATO V, CERRONE M, LAVITRANO M, et al. A systematic review of the current status and quality of radiomics for glioma differential diagnosis[J/OL]. Cancers (Basel), 2022, 14(11): 2731 [2024-05-30]. https://www.mdpi.com/2072-6694/14/11/2731. DOI: 10.3390/cancers14112731
[42]
ZHU Z Y, SHEN J F, CHEN S X, et al. Prediction of isocitrate dehydrogenase mutation in glioma with different radiomic models based on susceptibility-weighted imaging[J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 44-50. DOI: 10.6040/j.issn.1671-7554.0.2023.0770
[43]
ZHAO Q R. Study on the predictive value of the nomogram based on SWI and CE-T1WI radiomics for IDH1 genotype off diffuse glioma[D]. Kunming: Kunming Medical University, 2022. DOI: 10.27202/d.cnki.gkmyc.2022.001009.
[44]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: Images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[45]
GENC O, MORRISON M A, VILLANUEVA-MEYER J E, et al. DeepSWI: Using deep learning to enhance susceptibility contrast on T2*-weighted MRI[J]. J Magn Reson Imaging, 2023, 58(4): 1200-1210. DOI: 10.1002/jmri.28622.
[46]
CHOWDHURY T, ZEILER F A, SINGH G P, et al. The role of intraoperative MRI in awake neurosurgical procedures: A systematic review[J]. Front Oncol, 2018, 8: 434 [2024-05-29]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2018.00434/full. DOI: 10.3389/fonc.2018.00434.
[47]
MUTCHNICK I, MORIARTY T M. Intraoperative MRI in pediatric neurosurgery-an update[J]. Transl Pediatr, 2014, 3(3): 236-246. DOI: 10.3978/j.issn.2224-4336.2014.07.09.
[48]
FUJII Y, OGIWARA T, WATANABE G, et al. Intraoperative low-field magnetic resonance imaging-guided tumor resection in glioma surgery: Pros and cons[J]. J Nippon Med Sch, 2022, 89(3): 269-276. DOI: 10.1272/jnms.JNMS.2022_89-301.
[49]
ZHANG S, LIU Z, NGUYEN T D, et al. Clinical feasibility of brain quantitative susceptibility mapping[J]. Magn Reson Imaging, 2019, 60: 44-51. DOI: 10.1016/j.mri.2019.04.003.
[50]
FUSHIMI Y, NAKAJIMA S, SAKATA A, et al. Value of quantitative susceptibility mapping in clinical neuroradiology[J]. J Magn Reson Imaging, 2024, 59(6): 1914-1929. DOI: 10.1002/jmri.29010.

PREV Adult diffuse intrinsic pontine glioma with vertebral canal dissemination: One case report and literature review
NEXT Progress in multimodal MRI research on acupuncture at Siguan point for the treatment of mild cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn