Share:
Share this content in WeChat
X
Review
Research progress of multimodal MRI technology in multiple sclerosis complicated with depression
QI Kai  LI Hao  XU Junhai  REN Rui  LI Xianglin 

Cite this article as: QI K, LI H, XU J H, et al. Research progress of multimodal MRI technology in multiple sclerosis complicated with depression[J]. Chin J Magn Reson Imaging, 2024, 15(6): 144-148. DOI:10.12015/issn.1674-8034.2024.06.022.


[Abstract] Depression is one of the most common mental disorders in patients with multiple sclerosis, which seriously affects the quality of life and prognosis of patients. Influenced by many pathogenic factors, its pathophysiological mechanism is not clear. With the development of neuroimaging, structural MRI and functional MRI are widely used in the study of mental disorders. This review describes the imaging research progress of multimodal MRI in multiple sclerosis with depression, and provides objective imaging evidence for the pathophysiological mechanism of multiple sclerosis with depression.
[Keywords] multiple sclerosis;depression;magnetic resonance imaging;brain structure;brain function

QI Kai1   LI Hao1   XU Junhai2   REN Rui3   LI Xianglin1*  

1 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

2 Department of Intelligence and Computing, Tianjin University, Tianjin 300350, China

3 Department of Radiology, Binzhou Medical University Hospital, Binzhou 256600, China

Corresponding author: LI X L, E-mail: xlli@bzmc.edu.cn

Conflicts of interest   None.

Received  2024-02-03
Accepted  2024-06-03
DOI: 10.12015/issn.1674-8034.2024.06.022
Cite this article as: QI K, LI H, XU J H, et al. Research progress of multimodal MRI technology in multiple sclerosis complicated with depression[J]. Chin J Magn Reson Imaging, 2024, 15(6): 144-148. DOI:10.12015/issn.1674-8034.2024.06.022.

[1]
CHITNIS T. Multiple sclerosis in 2022: old players, new insights[J]. Lancet Neurol, 2023, 22(1): 19-21. DOI: 10.1016/s1474-4422(22)00479-3.
[2]
BENEDICT R H B, AMATO M P, DELUCA J, et al. Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues[J]. Lancet Neurol, 2020, 19(10): 860-871. DOI: 10.1016/s1474-4422(20)30277-5.
[3]
LI M, GAO W, ZHANG Y, et al. Secular trends in the incidence of major depressive disorder and dysthymia in China from 1990 to 2019[J/OL]. BMC Public Health, 2023, 23(1): 2162 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/37926849/. DOI: 10.1186/s12889-023-17025-4.
[4]
CROUCH T A, REAS H E, QUACH C M, et al. Does depression in multiple sclerosis mediate effects of cognitive functioning on quality of life?[J]. Qual Life Res, 2021, 31(2): 497-506. DOI: 10.1007/s11136-021-02927-w.
[5]
FENG R H, ZHUO L H, LI H W, et al. MRI advances of hippocampus in adolescents with depression[J]. Chin J Magn Reson Imaging, 2022, 14(4): 120-125. DOI: 10.12015/issn.1674-8034.2023.04.021.
[6]
HEITMANN H, ANDLAUER T F M, KORN T, et al. Fatigue, depression, and pain in multiple sclerosis: How neuroinflammation translates into dysfunctional reward processing and anhedonic symptoms[J]. Mult Scler, 2020, 28(7): 1020-1027. DOI: 10.1177/1352458520972279.
[7]
WANG J, FAN X, WANG J, et al. Tryptophan metabolism in central nervous system diseases: Pathophysiology and potential therapeutic strategies[J]. Aging Dis, 2023, 14(3): 858-878. DOI: 10.14336/ad.2022.0916.
[8]
BIRMPILI D, CHARMARKE ASKAR I, BIGAUT K, et al. The translatability of multiple sclerosis animal models for biomarkers discovery and their clinical use[J/OL]. Int J Mol Sci, 2022, 23(19): 11523 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/36232832/. DOI: 10.3390/ijms231911532.
[9]
AKHAVAN TAVAKOLI M, SOLEIMANI M, MARZBAN H, et al. Autophagic molecular alterations in the mouse cerebellum experimental autoimmune encephalomyelitis model following treatment with cannabidiol and fluoxetine[J]. Mol Neurobiol, 2022, 60(4): 1797-809. DOI: 10.1007/s12035-022-03170-1.
[10]
STAMOULA E, AINATZOGLOU A, STAMATELLOS V P, et al. Atypical antipsychotics in multiple sclerosis: A review of their in vivo immunomodulatory effects[J/OL]. Mult Scler Relat Disord, 2022, 58: 103522 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/35063906/. DOI: 10.1016/j.msard.2022.103522.
[11]
VAN GEEST Q, BOESCHOTEN R E, KEIJZER M J, et al. Fronto-limbic disconnection in patients with multiple sclerosis and depression[J]. Mult Scler, 2018, 25(5): 715-726. DOI: 10.1177/1352458518767051.
[12]
WEERASINGHE-MUDIYANSELAGE P D E, ANG M J, KANG S, et al. Structural plasticity of the hippocampus in neurodegenerative diseases[J/OL]. Int J Mol Sci, 2022, 23(6): 3349 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/35328770/. DOI: 10.3390/ijms23063349.
[13]
NOORAEI A, KHAZAEEL K, DARVISHI M, et al. Dimorphic evaluation of hippocampal changes in rat model of demyelination: A comparative functional, morphometric, and histological study[J/OL]. Brain Behav, 2022, 12(8): e32723 [2024-02-03]. https://doi.org/10.1002/brb3.2723. DOI: 10.1002/brb3.2723.
[14]
GOLD S M, KERN K C, O'CONNOR M F, et al. Smaller cornu ammonis 2–3/dentate gyrus volumes and elevated cortisol in multiple sclerosis patients with depressive symptoms[J]. Biol Psychiatry, 2010, 68(6): 553-559. DOI: 10.1016/j.biopsych.2010.04.025.
[15]
GOLD S M, O'CONNOR M F, GILL R, et al. Detection of altered hippocampal morphology in multiple sclerosis-associated depression using automated surface mesh modeling[J]. Hum Brain Mapp, 2014, 35(1): 30-37. DOI: 10.1002/hbm.22154.
[16]
WANG XH, DING S, CHEN XY, et al. Deep gray matter changes in relapsing-remitting multiple sclerosis detected by multimodal MRI[J]. Chin J Magn Reson Imaging, 2022, 13(5): 23-27. DOI: 10.12015/issn.1674-8034.2022.05.005.
[17]
HU C, DEWEY B E, MOWRY E M, et al. Deep gray matter substructure volumes and depressive symptoms in a large multiple sclerosis cohort[J]. Mult Scler, 2023, 29(7): 809-818. DOI: 10.1177/13524585221148144.
[18]
LAZZAROTTO A, MARGONI M, FRANCIOTTA S, et al. Selective cerebellar atrophy associates with depression and fatigue in the early phases of relapse-onset multiple sclerosis[J]. Cerebellum, 2020, 19(2): 192-200. DOI: 10.1007/s12311-019-01096-4.
[19]
ZHUO Z, LI Y, DUAN Y, et al. Subtyping relapsing-remitting multiple sclerosis using structural MRI[J]. J Neurol, 2021, 268(5): 1808-1817. DOI: 10.1007/s00415-020-10376-7.
[20]
TÓTH E, FARAGÓ P, KIRÁLY A, et al. The contribution of various MRI parameters to clinical and cognitive disability in multiple sclerosis[J/OL]. Front Neurol, 2019, 9: 1127 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/30728801/. DOI: 10.3389/fneur.2018.01172.
[21]
ROCCA M A, MARGONI M, BATTAGLINI M, et al. Emerging perspectives on MRI application in multiple sclerosis: Moving from pathophysiology to clinical practice[J/OL]. Radiology, 2023, 307(5): e221512 [2024-02-03]. https://doi.org/10.1148/radiol.221512. DOI: 10.1148/radiol.221512.
[22]
VALDÉS CABRERA D, SMYTH P, BLEVINS G, et al. Diffusion imaging of fornix and interconnected limbic deep grey matter is linked to cognitive impairment in multiple sclerosis[J]. Eur J Neurosci, 2021, 55(1): 277-294. DOI: 10.1111/ejn.15539.
[23]
VALDéS CABRERA D, STOBBE R, SMYTH P, et al. Diffusion tensor imaging tractography reveals altered fornix in all diagnostic subtypes of multiple sclerosis[J/OL]. Brain Behav, 2019, 10(1): e01514 [2024-02-03]. https://doi.org/10.1002/brb3.1514. DOI: 10.1002/brb3.1514.
[24]
BEAUDOIN A M, RHEAULT F, THEAUD G, et al. Modern technology in multi-shell diffusion MRI reveals diffuse white matter changes in young adults with relapsing-remitting multiple sclerosis[J/OL]. Front Neurosci, 2021, 15: 665017 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/34447292/. DOI: 10.3389/fnins.2021.665017.
[25]
BRACHT T, MERTSE N, WALTHER S, et al. Link between structural connectivity of the medial forebrain bundle, functional connectivity of the ventral tegmental area, and anhedonia in unipolar depression[J/OL]. Neuroimage Clin, 2022, 34: 102961 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/35152053/. DOI: 10.1016/j.nicl.2022.102961.
[26]
SOUZA R, BUENO D, LIMA L B, et al. Top-down projections of the prefrontal cortex to the ventral tegmental area, laterodorsal tegmental nucleus, and median raphe nucleus[J]. Brain Struct Funct, 2022, 227(7): 2465-2487. DOI: 10.1007/s00429-022-02538-2.
[27]
PALOTAI M, SMALL C, MAKRIS N, et al. Microstructural changes in the left mesocorticolimbic pathway are associated with the comorbid development of fatigue and depression in multiple sclerosis[J]. J Neuroimaging, 2021, 31(3): 501-507. DOI: 10.1111/jon.12832.
[28]
ZHANG B, ROLLS E T, WANG X, et al. Roles of the medial and lateral orbitofrontal cortex in major depression and its treatment[J/OL]. Mol Psychiatry, 2024, 10 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/38212376/. DOI: 10.1038/s41380-023-02380-w.
[29]
COENEN V A, BEWERNICK B H, KAYSER S, et al. Superolateral medial forebrain bundle deep brain stimulation in major depression: a gateway trial[J]. Neuropsychopharmacology, 2019, 44(7): 1224-1232. DOI: 10.1038/s41386-019-0369-9.
[30]
KILIAN H M, SCHILLER B, MEYER-DOLL D M, et al. Normalized affective responsiveness following deep brain stimulation of the medial forebrain bundle in depression[J/OL]. Transl Psychiatry, 2024, 14(1): 6 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/38191528/. DOI: 10.1038/s41398-023-02712-y.
[31]
CHITNIS T, VANDERCAPPELLEN J, KING M, et al. Symptom interconnectivity in multiple sclerosis: A narrative review of potential underlying biological disease processes[J]. Neurol Ther, 2022, 11(3): 1043-1070. DOI: 10.1007/s40120-022-00368-2.
[32]
PALOTAI M, CAVALLARI M, KOUBIYR I, et al. Microstructural fronto-striatal and temporo-insular alterations are associated with fatigue in patients with multiple sclerosis independent of white matter lesion load and depression[J]. Mult Scler, 2019, 26(13): 1708-1718. DOI: 10.1177/1352458519869185.
[33]
KANG W. Personality traits predict 7-year risk of diagnosis of multiple sclerosis: A prospective study[J/OL]. J Clin Med, 2023, 12(2): 682 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/36675611/. DOI: 10.3390/jcm12020682.
[34]
FUCHS T A, DWYER M G, KUCEYESKI A, et al. White matter tract network disruption explains reduced conscientiousness in multiple sclerosis[J]. Hum Brain Mapp, 2018, 39(9): 3682-3690. DOI: 10.1002/hbm.24203.
[35]
ASHTON K, FUCHS T A, OSHIP D, et al. Diagnosis of depression in multiple sclerosis is predicted by frontal-parietal white matter tract disruption[J]. J Neurol, 2020, 268(1): 169-177. DOI: 10.1007/s00415-020-10110-3.
[36]
LI G, LIU Y, ZHENG Y, et al. Multiscale neural modeling of resting-state fMRI reveals executive-limbic malfunction as a core mechanism in major depressive disorder[J/OL]. Neuroimage Clin, 2021, 31: 102758 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/34284335/. DOI: 10.1016/j.nicl.2021.102758.
[37]
ZHONG J, XU J, WANG Z, et al. Changes in brain functional networks in remitted major depressive disorder: a six-month follow-up study[J/OL]. BMC Psychiatry, 2023, 23(1): 628 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/37641013/. DOI: 10.1186/s12888-023-05082-3.
[38]
SU R N, XIE S H, GAO Y. Observation on default mode network functional connectivity in first-episode mild to moderate depression patients with resting-state functional MRI[J]. Chin J Med Imaging Technol, 2022, 38(1): 38-43. DOI: 10.13929/j.issn.1003-3289.2022.01.009.
[39]
MOCCIA M, HØGESTØL E A, NYGAARD G O, et al. Symptoms of fatigue and depression is reflected in altered default mode network connectivity in multiple sclerosis[J/OL]. Plos One, 2019, 14(4): e0210375 [2024-02-03]. https://doi.org/10.1371/journal.pone.0210375. DOI: 10.1371/journal.pone.0210375.
[40]
MARGONI M, PREZIOSA P, ROCCA M A, et al. Depressive symptoms, anxiety and cognitive impairment: emerging evidence in multiple sclerosis[J/OL]. Transl Psychiatry, 2023, 13(1): 264 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/37468462/. DOI: 10.1038/s41398-023-02555-7.
[41]
MASUCCIO F G, GAMBERINI G, CALABRESE M, et al. Imaging and depression in multiple sclerosis: a historical perspective[J]. Neurol Sci, 2021, 42(3): 835-845. DOI: 10.1007/s10072-020-04951-z.
[42]
MARTINO M, MAGIONCALDA P, MENDILI M M EL, et al. Depression is associated with disconnection of neurotransmitter-related nuclei in multiple sclerosis[J]. Mult Scler, 2020, 27(7): 1102-1111. DOI: 10.1177/1352458520948214.
[43]
CARANDINI T, MANCINI M, BOGDAN I, et al. In vivo evidence of functional disconnection between brainstem monoaminergic nuclei and brain networks in multiple sclerosis[J/OL]. Mult Scler Relat Disord, 2021, 56: 103224 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/34461571/. DOI: 10.1016/j.msard.2021.103224.
[44]
CAROTENUTO A, VALSASINA P, PREZIOSA P, et al. Monoaminergic network abnormalities: a marker for multiple sclerosis-related fatigue and depression[J]. J Neurol Neurosurg Psychiatry, 2023, 94(2): 94-101. DOI: 10.1136/jnnp-2022-330109.
[45]
CAROTENUTO A, WILSON H, GIORDANO B, et al. Impaired connectivity within neuromodulatory networks in multiple sclerosis and clinical implications[J]. J Neurol, 2020, 267(7): 2042-2053. DOI: 10.1007/s00415-020-09806-3.
[46]
BOUDIEU L, MENNETRIER M, LLORCA P M, et al. The efficacy and safety of intranasal formulations of ketamine and esketamine for the treatment of major depressive disorder: A systematic review[J/OL]. Pharmaceutics, 2023, 15(12): 2773 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/38140113/. DOI: 10.3390/pharmaceutics15122773.
[47]
HU Y T, TAN Z L, HIRJAK D, et al. Brain-wide changes in excitation-inhibition balance of major depressive disorder: a systematic review of topographic patterns of GABA- and glutamatergic alterations[J]. Mol Psychiatry, 2023, 28(8): 3257-3266. DOI: 10.1038/s41380-023-02193-x.
[48]
BENSON K L, BOTTARY R, SCHOERNING L, et al. 1H MRS measurement of cortical GABA and glutamate in primary insomnia and major depressive disorder: Relationship to sleep quality and depression severity[J]. J Affect Disord, 2020, 274: 624-631. DOI: 10.1016/j.jad.2020.05.026.
[49]
DRAGANOV M, VIVES-GILABERT Y, DE DIEGO-ADELIÑO J, et al. Glutamatergic and GABA-ergic abnormalities in first-episode depression. A 1-year follow-up 1H-MR spectroscopic study[J]. J Affect Disord, 2020, 266: 572-577. DOI: 10.1016/j.jad.2020.01.138.
[50]
HE J, WANG D, BAN M, et al. Regional metabolic heterogeneity in anterior cingulate cortex in major depressive disorder: A multi-voxel 1H magnetic resonance spectroscopy study[J]. J Affect Disord, 2022, 318: 263-271. DOI: 10.1016/j.jad.2022.09.001.
[51]
MUHLERT N, ATZORI M, DE VITA E, et al. Memory in multiple sclerosis is linked to glutamate concentration in grey matter regions[J]. J Neurol Neurosurg Psychiatry, 2014, 85(8): 833-839. DOI: 10.1136/jnnp-2013-306662.
[52]
CLÉRY-MELIN M-L, JOLLANT F, GORWOOD P. Reward systems and cognitions in major depressive disorder[J]. CNS Spectr, 2018, 24(1): 64-77. DOI: 10.1017/S1092852918001335.
[53]
STAMPANONI BASSI M, NUZZO T, GILIO L, et al. Cerebrospinal fluid levels of L-glutamate signal central inflammatory neurodegeneration in multiple sclerosis[J]. J Neurochem, 2021, 159(5): 857-866. DOI: 10.1111/jnc.15518.
[54]
ZHAI D, YAN S, SAMSOM J, et al. Small-molecule targeting AMPA-mediated excitotoxicity has therapeutic effects in mouse models for multiple sclerosis[J/OL]. Sci Adv, 2023, 9(49): eadj6187 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/38064562/. DOI: 10.1126/sciadv.adj6187.
[55]
ZIMEK D, MIKLUSOVA M, MARES J. Overview of the current pathophysiology of fatigue in multiple sclerosis, its diagnosis and treatment options-review article[J]. Neuropsychiatr Dis Treat, 2023, 19: 2485-2497. DOI: 10.2147/ndt.S429862.
[56]
FU X N, WANG J. The clinical research progress of gamma-aminobutynic acid quantification based on MEGA-PRESS in neurological diseases[J]. Chin J Magn Reson Imaging, 2023, 14(6): 89-93. DOI: 10.12015/issn.1674-8034.2023.06.015.

PREV Progress in multimodal MRI research on acupuncture at Siguan point for the treatment of mild cognitive impairment
NEXT Advances in resting-state fMRI studies of depression in children and adolescents
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn