Share:
Share this content in WeChat
X
Review
Advances in resting-state fMRI studies of depression in children and adolescents
WU Rong  LING Aonan  ZHANG Gaofeng 

Cite this article as: WU R, LING A N, ZHANG G F. Advances in resting-state fMRI studies of depression in children and adolescents[J]. Chin J Magn Reson Imaging, 2024, 15(6): 149-152, 195. DOI:10.12015/issn.1674-8034.2024.06.023.


[Abstract] Childhood and adolescent depression is a serious mental health problem that affects the way children and adolescents thinks, feels, and behaves, and can lead to emotional, functional, and physical problems. The etiology and pathophysiologic mechanisms of depression are unknown, and currently, MRI is one of the main methods to study its etiology and pathophysiologic mechanisms. Functional MRI (fMRI) reflects real-time changes in brain function and can be used to explore the functional activity of relevant brain regions in children and adolescents with depression. Resting-state fMRI (rs-fMRI) is currently a popular research technique for studying neuroimaging, which provides imaging support for exploring the functional alterations of abnormal brain regions in children and adolescents with depression. In this paper, we briefly summarize the results and potential shortcomings of rs-fMRI studies of adolescent depression in recent years, aiming to provide directions for future research.
[Keywords] depression;children;adolescent;resting-state functional magnetic resonance imaging;magnetic resonance imaging

WU Rong   LING Aonan   ZHANG Gaofeng*  

Department of Radiology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China

Corresponding author: ZHANG G F, E-mail: zhanggaofeng159@126.com

Conflicts of interest   None.

Received  2023-12-12
Accepted  2024-04-30
DOI: 10.12015/issn.1674-8034.2024.06.023
Cite this article as: WU R, LING A N, ZHANG G F. Advances in resting-state fMRI studies of depression in children and adolescents[J]. Chin J Magn Reson Imaging, 2024, 15(6): 149-152, 195. DOI:10.12015/issn.1674-8034.2024.06.023.

[1]
WACHOWSKA K, GAŁECKI P. Inflammation and cognition in depression: A narrative review[J/OL]. J Clin Med, 2021, 10(24): 5859 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706670/. DOI: 10.3390/jcm10245859.
[2]
RICE F, RIGLIN L, LOMAX T, et al. Adolescent and adult differences in major depression symptom profiles[J]. J Affect Disord, 2019, 243: 175-181. DOI: 10.1016/j.jad.2018.09.015.
[3]
HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. DOI: 10.1016/S2215-0366(18)30511-X.
[4]
DIENER M J, GOTTDIENER W H, KEEFE J R, et al. Treatment of depression in children and adolescents[J/OL]. Lancet Psychiatry, 2021, 8(2): 97 [2023-12-08]. https://www.sciencedirect.com/science/article/abs/pii/S2215036620305186. DOI: 10.1016/S2215-0366(20)30518-6.
[5]
BENTON T D. Suicide and suicidal behaviors among minoritized youth[J]. Child Adolesc Psychiatr Clin N Am, 2022, 31(2): 211-221. DOI: 10.1016/j.chc.2022.01.002.
[6]
KIM S G. Biophysics of BOLD fMRI investigated with animal models[J]. J Magn Reson, 2018, 292: 82-89. DOI: 10.1016/j.jmr.2018.04.006.
[7]
HARRIS J J, REYNELL C. How do antidepressants influence the BOLD signal in the developing brain?[J]. Dev Cogn Neurosci, 2017, 25: 45-57. DOI: 10.1016/j.dcn.2016.12.003.
[8]
KANG L, WAN C. Application of advanced magnetic resonance imaging in glaucoma: a narrative review[J]. Quant Imaging Med Surg, 2022, 12(3): 2106-2128. DOI: 10.21037/qims-21-790.
[9]
SPELLMAN T, LISTON C. Toward circuit mechanisms of pathophysiology in depression[J]. Am J Psychiatry, 2020, 177(5): 381-390. DOI: 10.1176/appi.ajp.2020.20030280.
[10]
CHASE H W, AUERBACH R P, BRENT D A, et al. Dissociating default mode network resting state markers of suicide from familial risk factors for depression[J]. Neuropsychopharmacology, 2021, 46(10): 1830-1838. DOI: 10.1038/s41386-021-01022-5.
[11]
SUN J, GUO C, MA Y, et al. A comparative study of amplitude of low-frequence fluctuation of resting-state fMRI between the younger and older treatment-resistant depression in adults[J/OL]. Front Neurosci, 2022, 16: 949698 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462398/. DOI: 10.3389/fnins.2022.949698.
[12]
ZHANG B, QI S, LIU S, et al. Altered spontaneous neural activity in the precuneus, middle and superior frontal gyri, and hippocampus in college students with subclinical depression[J/OL]. BMC Psychiatry, 2021, 21(1): 280 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8167968/. DOI: 10.1186/s12888-021-03292-1.
[13]
PAN H Q, LI S Y, WANG Y L, et al. The changes of amplitude of low frequency fluctuation in adolescent depression patients with suicidal ideation: a resting-state functional magnetic resonance imaging study[J]. Chin J Behav Med & Brain Sci, 2019, 28(12): 1091-1095. DOI: 10.3760/cma.j.issn.1674-6554.2019.12.007.
[14]
HU C, JIANG W, HUANG J, et al. The amplitude of low-frequency fluctuation characteristics in depressed adolescents with suicide attempts: a resting-state fMRI study[J/OL]. Front Psychiatry, 2023, 14: 1228260 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419264/. DOI: 10.3389/fpsyt.2023.1228260.
[15]
ZHOU Y, SONG Y, CHEN C, et al. Abnormal amplitude of low-frequency fluctuation values as a neuroimaging biomarker for major depressive disorder with suicidal attempts in adolescents: A resting-state fMRI and support vector machine analysis[J/OL]. Front Psychol, 2023, 14: 1146944 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998935/. DOI: 10.3389/fpsyg.2023.1146944.
[16]
KÜBLBÖCK M, WOLETZ M, HÖFLICH A, et al. Stability of low-frequency fluctuation amplitudes in prolonged resting-state fMRI[J]. Neuroimage, 2014, 103: 249-257. DOI: 10.1016/j.neuroimage.2014.09.038.
[17]
ZOU Q H, ZHU C Z, YANG Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
[18]
WANG L, LI X, LI K, et al. Mapping the effect of escitalopram treatment on amplitude of low-frequency fluctuations in patients with depression: a resting-state fMRI study[J]. Metab Brain Dis, 2017, 32(1): 147-154. DOI: 10.1007/s11011-016-9871-5.
[19]
WANG X Y, TAN H, LI X, et al. Resting-state functional magnetic resonance imaging-based identification of altered brain the fractional amplitude of low frequency fluctuation in adolescent major depressive disorder patients undergoing electroconvulsive therapy[J/OL]. Front Psychiatry, 2022, 13: 972968 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357980/. DOI: 10.3389/fpsyt.2022.972968.
[20]
SHAN X, QIU Y, PAN P, et al. Disrupted regional homogeneity in drug-naive patients with bipolar disorder[J/OL]. Front Psychiatry, 2020, 11: 825 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456987/. DOI: 10.3389/fpsyt.2020.00825.
[21]
LIU S, MA R, LUO Y, et al. Facial expression recognition and ReHo analysis in major depressive disorder[J/OL]. Front Psychol, 2021, 12: 688376 [2023-12-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493300/. DOI: 10.3389/fpsyg.2021.688376.
[22]
STEFFENS D C, WANG L, PEARLSON G D. Functional connectivity predictors of acute depression treatment outcome[J]. Int Psychogeriatr, 2019, 31(12): 1831-1835. DOI: 10.1017/S1041610218002260.
[23]
GRAY J P, MÜLLER V I, EICKHOFF S B, et al. Multimodal abnormalities of brain structure and function in major depressive disorder: A meta-analysis of neuroimaging studies[J]. Am J Psychiatry, 2020, 177(5): 422-434. DOI: 10.1176/appi.ajp.2019.19050560.
[24]
MAO N, CHE K, CHU T, et al. Aberrant resting-state brain function in adolescent depression[J/OL]. Front Psychol, 2020, 11: 1784 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396538/. DOI: 10.3389/fpsyg.2020.01784.
[25]
LIU M, HUANG Y, LI X, et al. Aberrant frontolimbic circuit in female depressed adolescents with and without suicidal attempts: A resting-state functional magnetic resonance imaging study[J/OL]. Front Psychiatry, 2022, 13: 1007144 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641155/. DOI: 10.3389/fpsyt.2022.1007144.
[26]
LI X, CHEN X, ZHOU Y, et al. Altered regional homogeneity and amplitude of low-frequency fluctuations induced by electroconvulsive therapy for adolescents with depression and suicidal ideation[J]. Brain Sci, 2022, 12(9): 1121 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496677/. DOI: 10.3390/brainsci12091121.
[27]
ZHOU Y, YU R, AI M, et al. A resting state functional magnetic resonance imaging study of unmedicated adolescents with non-suicidal self-injury behaviors: Evidence from the amplitude of low-frequency fluctuation and regional homogeneity indicator[J/OL]. Front Psychiatry, 2022, 13: 925672 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247173/. DOI: 10.3389/fpsyt.2022.925672.
[28]
LI Y, WANG C, TENG C, et al. Hippocampus-driving progressive structural alterations in medication-naïve major depressive disorder[J]. J Affect Disord, 2019, 256: 148-155. DOI: 10.1016/j.jad.2019.05.053.
[29]
JIAO K, XU H, TENG C, et al. Connectivity patterns of cognitive control network in first episode medication-naive depression and remitted depression[J/OL]. Behav Brain Res, 2020, 379: 112381 [2023-12-09]. https://www.sciencedirect.com/science/article/pii/S0166432818309987. DOI: 10.1016/j.bbr.2019.112381.
[30]
ZHANG G, XIAO Q, WANG C, et al. The different impact of depressive or manic first-episode on pediatric bipolar disorder patients: Evidence from resting-state fMRI[J]. Neuroscience, 2023, 526: 185-195. DOI: 10.1016/j.neuroscience.2023.06.015.
[31]
LI Y, DAI X, WU H, et al. Establishment of effective biomarkers for depression diagnosis with fusion of multiple resting-state connectivity measures[J/OL]. Front Neurosci, 2021, 15: 729958 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458632/. DOI: 10.3389/fnins.2021.729958.
[32]
CAO J, AI M, CHEN X, et al. Altered resting-state functional network connectivity is associated with suicide attempt in young depressed patients[J/OL]. Psychiatry Res, 2020, 285: 112713 [2023-12-09]. https://www.sciencedirect.com/science/article/pii//S0165178119312144. DOI: 10.1016/j.psychres.2019.112713.
[33]
MACÊDO M A, SATO J R, BRESSAN R A, et al. Adolescent depression and resting-state fMRI brain networks: a scoping review of longitudinal studies[J]. Braz J Psychiatry, 2022, 44(4): 420-433. DOI: 10.47626/1516-4446-2021-2032.
[34]
YANG J, GOHEL S, VACHHA B. Current methods and new directions in resting state fMRI[J]. Clin Imaging, 2020, 65: 47-53. DOI: 10.1016/j.clinimag.2020.04.004.
[35]
CHI S, SONG M, LEE J H, et al. Prospective study on resting state functional connectivity in adolescents with major depressive disorder after antidepressant treatment[J]. J Psychiatr Res, 2021, 142: 369-375. DOI: 10.1016/j.jpsychires.2021.08.026.
[36]
PANNEKOEK J N, VAN DER WERFF S J, MEENS P H, et al. Aberrant resting-state functional connectivity in limbic and salience networks in treatment--naïve clinically depressed adolescents[J]. J Child Psychol Psychiatry, 2014, 55(12): 1317-1327. DOI: 10.1111/jcpp.12266.
[37]
LEE J, PAVULURI M N, KIM J H, et al. Resting-state functional connectivity in medication-naïve adolescents with major depressive disorder[J]. Psychiatry Res Neuroimaging, 2019, 288: 37-43. DOI: 10.1016/j.pscychresns.2019.04.008.
[38]
EBNEABBASI A, MAHDIPOUR M, NEJATI V, et al. Emotion processing and regulation in major depressive disorder: A 7T resting-state fMRI study[J]. Hum Brain Mapp, 2021, 42(3): 797-810. DOI: 10.1002/hbm.25263.
[39]
YAN R, HUANG Y, SHI J, et al. Alterations of regional spontaneous neuronal activity and corresponding brain circuits related to non-suicidal self-injury in young adults with major depressive disorder[J]. J Affect Disord, 2022, 305: 8-18. DOI: 10.1016/j.jad.2022.02.040.
[40]
CHEN J, LUO Q, LI Y, et al. Intrinsic brain abnormalities in female major depressive disorder patients with childhood trauma: A resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2022, 16: 930997 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395929/. DOI: 10.3389/fnins.2022.930997.
[41]
WEN Z, KANG Y, ZHANG Y, et al. Alteration of degree centrality in adolescents with early blindness[J/OL]. Front Hum Neurosci, 2022, 16: 935642 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271564/. DOI: 10.3389/fnhum.2022.935642.
[42]
DU B, CAO S, LIU Y, et al. Abnormal degree centrality in white matter hyperintensities: A resting-state functional magnetic resonance imaging study[J/OL]. Front Psychiatry, 2021, 12: 684553 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315277/. DOI: 10.3389/fpsyt.2021.684553.
[43]
LI S, MA X, HUANG R, et al. Abnormal degree centrality in neurologically asymptomatic patients with end-stage renal disease: A resting-state fMRI study[J]. Clin Neurophysiol, 2016, 127(1): 602-609. DOI: 10.1016/j.clinph.2015.06.022.
[44]
YANG L, JIN C, QI S, et al. Aberrant degree centrality of functional brain networks in subclinical depression and major depressive disorder[J/OL]. Front Psychiatry, 2023, 14: 1084443 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978101/. DOI: 10.3389/fpsyt.2023.1084443.
[45]
LI X, YU R, HUANG Q, et al. Alteration of whole brain ALFF/fALFF and degree centrality in adolescents with depression and suicidal ideation after electroconvulsive therapy: A resting-state fMRI study[J/OL]. Front Hum Neurosci, 2021, 15: 762343 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632519/. DOI: 10.3389/fnhum.2021.762343.
[46]
GUO X, WANG W, KANG L, et al. Abnormal degree centrality in first-episode medication-free adolescent depression at rest: A functional magnetic resonance imaging study and support vector machine analysis[J/OL]. Front Psychiatry, 2022, 13: 926292 [2023-12-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9556654/. DOI: 10.3389/fpsyt.2022.926292.
[47]
SPORNS O. Graph theory methods: applications in brain networks[J]. Dialogues Clin Neurosci, 2018, 20(2): 111-121. DOI: 10.31887/DCNS.2018.20.2/osporns.
[48]
HE Y, EVANS A. Graph theoretical modeling of brain connectivity[J]. Curr Opin Neurol, 2010, 23(4): 341-350. DOI: 10.1097/WCO.0b013e32833aa567.
[49]
WU B, LI X, ZHOU J, et al. Altered whole-brain functional networks in drug-naïve, first-episode adolescents with major depression disorder[J]. J Magn Reson Imaging, 2020, 52(6): 1790-1798. DOI: 10.1002/jmri.27270.
[50]
WANG Y, KWAPONG W R, TU Y, et al. Altered resting-state functional connectivity density in patients with neuromyelitis optica-spectrum disorders[J/OL]. Mult Scler Relat Disord, 2020, 43: 102187 [2023-12-09]. https://www.sciencedirect.com/science/article/pii/S2211034820302637. DOI: 10.1016/j.msard.2020.102187.
[51]
JIANG Y, CHENG J L, CHEN Y, et al. The changes of functional connectivity on hemispheric level in depression patients with suicidal ideation: A functional magnetic resonance imaging study[J]. Chin J Magn Reson Imaging, 2022, 13(4): 1-4, 14. DOI: 10.12015/issn.1674-8034.2022.04.001

PREV Research progress of multimodal MRI technology in multiple sclerosis complicated with depression
NEXT Dynamic functional connectivity in autism spectrum disorders: applications and research advances
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn