Share:
Share this content in WeChat
X
Review
Research progress in PET/MR for diagnosis of Alzheimer's disease within ATN framework
ZHOU Yan  ZHOU Qidong  YIN Chenru  WU Ruolin  GAI Yongkang  SU Ying  XIA Xiaotian 

Cite this article as: ZHOU Y, ZHOU Q D, YIN C R, et al. Research progress in PET/MR for diagnosis of Alzheimer's disease within ATN framework[J]. Chin J Magn Reson Imaging, 2024, 15(6): 159-165. DOI:10.12015/issn.1674-8034.2024.06.025.


[Abstract] Alzheimer's disease (AD), a leading cause of dementia, emphasizes the critical importance of early diagnosis for timely intervention and disease progression mitigation. In 2018, the National Institute of Aging and Alzheimer's Association (NIA-AA) introduced the ATN (amyloid/tau/neurodegeneration) diagnostic criteria for AD, which has garnered extensive clinical acceptance and utilization. This article offers a comprehensive review of the applications of positron emission tomography (PET), magnetic resonance imaging (MRI), and integrated positron emission tomography-magnetic resonance imaging (PET/MR) in the ATN diagnostic framework, and explores the profound advantages of multi-probe, multi-modal PET/MR in diagnosis. The objective is to provide researchers with novel perspectives and references for further investigation, drive the clinical application of PET/MR for AD patients, and furnish clinicians with crucial imaging evidence to support their practice
[Keywords] Alzheimer's disease;biomarkers;positron emission tomography;magnetic resonance imaging;multimodal imaging

ZHOU Yan1   ZHOU Qidong2#   YIN Chenru3   WU Ruolin1   GAI Yongkang1   SU Ying2*   XIA Xiaotian1*  

1 Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan 430022, China

2 Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

3 Hubei Academy of Scientific and Technical Information, Wuhan 430070, China

Corresponding author: SU Y, E-mail: suying0110@126.com XIA X T, E-mail: xiaotian_xia@hust.edu.cn

Conflicts of interest   None.

Received  2024-02-04
Accepted  2024-06-03
DOI: 10.12015/issn.1674-8034.2024.06.025
Cite this article as: ZHOU Y, ZHOU Q D, YIN C R, et al. Research progress in PET/MR for diagnosis of Alzheimer's disease within ATN framework[J]. Chin J Magn Reson Imaging, 2024, 15(6): 159-165. DOI:10.12015/issn.1674-8034.2024.06.025.

[1]
2023 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2023, 19(4): 1598-1695. DOI: 10.1002/alz.13016.
[2]
JIA L, DU Y, CHU L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J/OL]. Lancet Public Health, 2020, 5(12): e661-e671 [2024-01-28]. https://doi.org/10.1016/S2468-2667(20)30185-7. DOI: 10.1016/s2468-2667(20)30185-7.
[3]
JIA L F, QUAN M N, FU Y, et al. Dementia in China: epidemiology, clinical management, and research advances[J]. Lancet Neurol, 2020, 19(1): 81-92. DOI: 10.1016/S1474-4422(19)30290-X.
[4]
HAWKSWORTH J, FERNÁNDEZ E, GEVAERT K. A new generation of AD biomarkers: 2019 to 2021[J/OL]. Ageing Res Rev, 2022, 79: 101654 [2024-01-28]. https://doi.org/10.1016/j.arr.2022.101654. DOI: 10.1016/j.arr.2022.101654.
[5]
QURESHI Y H, BERMAN D E, MARSH S E, et al. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease[J/OL]. Cell Rep, 2022, 38(3): 110262 [2024-01-28]. https://doi.org/10.1016/j.celrep.2021.110262. DOI: 10.1016/j.celrep.2021.110262.
[6]
JACK C R, BENNETT D A, BLENNOW K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 535-562. DOI: 10.1016/j.jalz.2018.02.018.
[7]
ZHAO Y, GUO Q R, ZHANG Y K, et al. Application of deep learning for prediction of Alzheimer's disease in PET/MR imaging[J/OL]. Bioengineering, 2023, 10(10): 1120 [2024-01-28]. https://doi.org/10.3390/bioengineering10101120. DOI: . DOI: 10.3390/bioengineering10101120.DOI:10.3390/bioengineering10101120.
[8]
ZHANG X Y, YANG Z L, LU G M, et al. PET/MR imaging: new frontier in Alzheimer's disease and other dementias[J/OL]. Front Mol Neurosci, 2017, 10: 343 [2024-01-18]. https://doi.org/10.3389/fnmol.2017.00343. DOI: 10.3389/fnmol.2017.00343.
[9]
AGRAWAL N, SKELTON A A. Structure and function of Alzheimer's amyloid βeta proteins from monomer to fibrils: a mini review[J]. Protein J, 2019, 38(4): 425-434. DOI: 10.1007/s10930-019-09854-3.
[10]
KITAJIMA K, ABE K, TAKEDA M, et al. Clinical impact of 11C-Pittsburgh compound-B positron emission tomography in addition to magnetic resonance imaging and single-photon emission computed tomography on diagnosis of mild cognitive impairment to Alzheimer's disease[J/OL]. Medicine, 2021, 100(3): e23969 [2024-01-28]. https://doi.org/10.1097/MD.0000000000023969. DOI: 10.1097/MD.0000000000023969.
[11]
RABINOVICI G D, GATSONIS C, APGAR C, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia[J]. JAMA, 2019, 321(13): 1286-1294. DOI: 10.1001/jama.2019.2000.
[12]
SHI Z H, FU L P, ZHANG N, et al. Amyloid PET in dementia syndromes: a Chinese multicenter study[J]. J Nucl Med, 2020, 61(12): 1814-1819. DOI: 10.2967/jnumed.119.240325.
[13]
MATTSSON N, PALMQVIST S, STOMRUD E, et al. Staging β-amyloid pathology with amyloid positron emission tomography[J]. JAMA Neurol, 2019, 76(11): 1319-1329. DOI: 10.1001/jamaneurol.2019.2214.
[14]
OSSENKOPPELE R, RABINOVICI G D, SMITH R, et al. Discriminative accuracy of[18F]flortaucipir positron emission tomography for alzheimer disease vs other neurodegenerative disorders[J]. JAMA, 2018, 320(11): 1151-1162. DOI: 10.1001/jama.2018.12917.
[15]
JAMES O G, LINARES A R, HELLEGERS C, et al. Evaluating alzheimer disease with flortaucipir and florbetapir PET: a clinical case series[J]. Clin Nucl Med, 2021, 46(7): 605-608. DOI: 10.1097/RLU.0000000000003493.
[16]
CHANG Y, LI C, YANG H, et al. 18F-florbetaben amyloid PET imaging: a Chinese study in cognitive normal controls, mild cognitive impairment, and Alzheimer's disease patients[J/OL]. Front Neurosci, 2020, 14: 745 [2024-01-28]. https://doi.org/10.3389/fnins.2020.00745. DOI: 10.3389/fnins.2020.00745.
[17]
JEONG Y J, YOON H J, KANG D Y, et al. Quantitative comparative analysis of amyloid PET images using three radiopharmaceuticals[J]. Ann Nucl Med, 2023, 37(5): 271-279. DOI: 10.1007/s12149-023-01824-1.
[18]
RUAN D, SUN L. Amyloid-β PET in Alzheimer's disease: a systematic review and Bayesian meta-analysis[J/OL]. Brain Behav, 2023, 13(1): e2850 [2024-01-28]. https://doi.org/10.1002/brb3.2850. DOI: 10.1002/brb3.2850.
[19]
WEGMANN S, BIERNAT J, MANDELKOW E. A current view on Tau protein phosphorylation in Alzheimer's disease[J/OL]. Curr Opin Neurobiol, 2021, 69: 131-138 [2024-01-28]. https://pubmed.ncbi.nlm.nih.gov/33892381/. DOI: 10.1016/j.conb.2021.03.003.
[20]
DING J, SHEN C S, WANG Z G, et al. Tau-PET abnormality as a biomarker for Alzheimer's disease staging and early detection: a topological perspective[J]. Cereb Cortex, 2023, 33(20): 10649-10659. DOI: 10.1093/cercor/bhad312.
[21]
CASSINELLI PETERSEN G, ROYTMAN M, CHIANG G C, et al. Overview of tau PET molecular imaging[J]. Curr Opin Neurol, 2022, 35(2): 230-239. DOI: 10.1097/WCO.0000000000001035.
[22]
WILCOCK G K, ESIRI M M. Plaques, tangles and dementia. A quantitative study[J]. J Neurol Sci, 1982, 56(2/3): 343-356. DOI: 10.1016/0022-510x(82)90155-1.
[23]
BRAAK H, BRAAK E. Neuropathological stageing of Alzheimer-related changes[J]. Acta Neuropathol, 1991, 82(4): 239-259. DOI: 10.1007/BF00308809.
[24]
VÖLTER F, BEYER L, ECKENWEBER F, et al. Assessment of perfusion deficit with early phases of [18F]PI-2620 tau-PET versus [18F]flutemetamol-amyloid-PET recordings[J]. Eur J Nucl Med Mol Imaging, 2023, 50(5): 1384-1394. DOI: 10.1007/s00259-022-06087-y.
[25]
CHIOTIS K, SAVITCHEVA I, POULAKIS K, et al. [18F]THK5317 imaging as a tool for predicting prospective cognitive decline in Alzheimer's disease[J]. Mol Psychiatry, 2021, 26(10): 5875-5887. DOI: 10.1038/s41380-020-0815-4.
[26]
CHO H, MUNDADA N S, APOSTOLOVA L G, et al. Amyloid and tau-PET in early-onset AD: baseline data from the Longitudinal Early-onset Alzheimer's Disease Study (LEADS)[J/OL]. Alzheimers Dement, 2023, 19(Suppl 9): S98-S114 [2024-01-28]. https://pubmed.ncbi.nlm.nih.gov/37690109/. DOI: 10.1002/alz.13453.
[27]
HARADA R, LERDSIRISUK P, SHIMIZU Y, et al. Preclinical characterization of the tau PET tracer [18F]SNFT-1: comparison of tau PET tracers[J]. J Nucl Med, 2023, 64(9): 1495-1501. DOI: 10.2967/jnumed.123.265593.
[28]
MORMINO E C, TOUEG T N, AZEVEDO C, et al. Tau PET imaging with 18F-PI-2620 in aging and neurodegenerative diseases[J]. Eur J Nucl Med Mol Imag, 2021, 48(7): 2233-2244. DOI: 10.1007/s00259-020-04923-7.
[29]
KWAN A T H, ARFAIE S, THERRIAULT J, et al. Medial temporal tau predicts memory decline in cognitively unimpaired elderly[J/OL]. Brain Commun, 2022, 5(1): fcac325 [2024-01-28]. https://pubmed.ncbi.nlm.nih.gov/36627889/. DOI: 10.1093/braincomms/fcac325.
[30]
HSU J L, LIN K J, HSIAO I T, et al. The imaging features and clinical associations of a novel tau PET tracer-18F-APN1607 in alzheimer disease[J]. Clin Nucl Med, 2020, 45(10): 747-756. DOI: 10.1097/RLU.0000000000003164.
[31]
LU J Y, MA X X, ZHANG H W, et al. Head-to-head comparison of plasma and PET imaging ATN markers in subjects with cognitive complaints[J/OL]. Transl Neurodegener, 2023, 12(1): 34 [2024-01-28]. https://doi.org/10.1186/s40035-023-00365-x. DOI: 10.1186/s40035-023-00365-x.
[32]
OSSENKOPPELE R, VAN DER KANT R, HANSSON O. Tau biomarkers in Alzheimer's disease: towards implementation in clinical practice and trials[J]. Lancet Neurol, 2022, 21(8): 726-734. DOI: 10.1016/S1474-4422(22)00168-5.
[33]
LANDAU S M, HARVEY D, MADISON C M, et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI[J]. Neurobiol Aging, 2011, 32(7): 1207-1218. DOI: 10.1016/j.neurobiolaging.2009.07.002.
[34]
MINOSHIMA S, CROSS D, THIENTUNYAKIT T, et al. 18F-FDG PET imaging in neurodegenerative dementing disorders: insights into subtype classification, emerging disease categories, and mixed dementia with copathologies[J]. J Nucl Med, 2022, 63(Suppl 1): 2S-12S. DOI: 10.2967/jnumed.121.263194.
[35]
BAGHEL V, TRIPATHI M, PARIDA G, et al. In vivo assessment of tau deposition in alzheimer disease and assessing its relationship to regional brain glucose metabolism and cognition[J/OL]. Clin Nucl Med, 2019, 44(11): e597-e601 [2024-01-28]. https://doi.org/10.1097/RLU.0000000000002791. DOI: 10.1097/RLU.0000000000002791.
[36]
XIONG X, HE H J, YE Q Q, et al. Alzheimer's disease diagnostic accuracy by fluid and neuroimaging ATN framework[J/OL]. CNS Neurosci Ther, 2024, 30(2): e14357 [2024-01-28]. https://doi.org/10.1111/cns.14357. DOI: 10.1111/cns.14357.
[37]
LEVIN F, FERREIRA D, LANGE C, et al. Data-driven FDG-PET subtypes of Alzheimer's disease-related neurodegeneration[J/OL]. Alzheimers Res Ther, 2021, 13(1): 49 [2024-01-28]. https://doi.org/10.1186/s13195-021-00785-9. DOI: 10.1186/s13195-021-00785-9.
[38]
JIA C H, LIANG M L, GUO R J, et al. The subtypes of metabolic pattern in 18 F-FDG PET/CT brain imaging in patients with Alzheimer's disease[J]. Chin J Neuroimmunol Neurol, 2022, 29(6): 482-487. DOI: 10.3969/j.issn.1006-2963.2022.06.007.
[39]
SALA A, CAPRIOGLIO C, SANTANGELO R, et al. Brain metabolic signatures across the Alzheimer's disease spectrum[J]. Eur J Nucl Med Mol Imaging, 2020, 47(2): 256-269. DOI: 10.1007/s00259-019-04559-2.
[40]
SANTANGELO R, MASSERINI F, AGOSTA F, et al. CSF p-tau/Aβ42 ratio and brain FDG-PET may reliably detect MCI "imminent" converters to AD[J]. Eur J Nucl Med Mol Imaging, 2020, 47(13): 3152-3164. DOI: 10.1007/s00259-020-04853-4.
[41]
BEYER L, NITSCHMANN A, BARTHEL H, et al. Early-phase [18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury[J]. Eur J Nucl Med Mol Imaging, 2020, 47(12): 2911-2922. DOI: 10.1007/s00259-020-04788-w.
[42]
ARRANZ A M, STROOPER B D. The role of astroglia in Alzheimer's disease: pathophysiology and clinical implications[J]. Lancet Neurol, 2019, 18(4): 406-414. DOI: 10.1016/S1474-4422(18)30490-3.
[43]
GARLAND E F, DENNETT O, LAU L C, et al. The mitochondrial protein TSPO in Alzheimer's disease: relation to the severity of AD pathology and the neuroinflammatory environment[J/OL]. J Neuroinflammation, 2023, 20(1): 186 [2024-01-28]. https://doi.org/10.1186/s12974-023-02869-9. DOI: 10.1186/s12974-023-02869-9.
[44]
ZHANG L L, HU K, SHAO T, et al. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging[J]. Acta Pharm Sin B, 2021, 11(2): 373-393. DOI: 10.1016/j.apsb.2020.08.006.
[45]
ALBAN S L, LYNCH K M, RINGMAN J M, et al. The association between white matter hyperintensities and amyloid and tau deposition[J/OL]. Neuroimage Clin, 2023, 38: 103383 [2024-05-11]. https://doi.org/10.1016/j.nicl.2023.103383. DOI: 10.1016/j.nicl.2023.103383.
[46]
GAUBERT M, LANGE C, GARNIER-CRUSSARD A, et al. Topographic patterns of white matter hyperintensities are associated with multimodal neuroimaging biomarkers of Alzheimer's disease[J/OL]. Alzheimers Res Ther, 2021, 13(1): 29 [2024-05-11]. https://doi.org/10.1186/s13195-020-00759-3. DOI: 10.1186/s13195-020-00759-3.
[47]
CRYSTAL O, MARALANI P J, BLACK S, et al. Detecting conversion from mild cognitive impairment to Alzheimer's disease using FLAIR MRI biomarkers[J/OL]. Neuroimage Clin, 2023, 40: 103533 [2024-05-18]. https://doi.org/10.1016/j.nicl.2023.103533. DOI: 10.1016/j.nicl.2023.103533.
[48]
HAO X Y, WANG X C. Application and development of multimodal MRI in the diagnosis of early AD[J]. Chin J Magn Reson Imag, 2018, 9(1): 69-73. DOI: 10.12015/issn.1674-8034.2018.01.015.
[49]
YU Q, MAI Y R, RUAN Y T, et al. An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer's disease[J/OL]. Alzheimers Res Ther, 2021, 13(1): 23 [2024-05-18]. https://doi.org/10.1186/s13195-020-00757-5. DOI: 10.1186/s13195-020-00757-5.
[50]
MAUL S, GIEGLING I, RUJESCU D. Proton magnetic resonance spectroscopy in common dementias-current status and perspectives[J/OL]. Front Psychiatry, 2020, 11: 769 [2024-01-28]. https://doi.org/10.3389/fpsyt.2020.00769. DOI: 10.3389/fpsyt.2020.00769.
[51]
SONG T, SONG X P, ZHU C, et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: a meta-analysis of in vivo magnetic resonance spectroscopy studies[J/OL]. Ageing Res Rev, 2021, 72: 101503 [2024-01-28]. https://doi.org/10.1016/j.arr.2021.101503. DOI: 10.1016/j.arr.2021.101503.
[52]
QIU Q Q. Neural networks in autosomal dominant Alzheimer's disease: insights from functional magnetic resonance imaging studies[J/OL]. Front Aging Neurosci, 2022, 14: 903269 [2024-05-18]. https://doi.org/10.3389/fnagi.2022.903269. DOI: 10.3389/fnagi.2022.903269.
[53]
LI Q, YUE X P, BAI Y, et al. Application value of multi-modal imaging technique in early diagnosis of Alzheimer's disease[J]. Chin J Magn Reson Imag, 2022, 13(11): 110-114. DOI: 10.12015/issn.1674-8034.2022.11.021.
[54]
ZHOU X M, LI K C. A correlation study between the cerebral perfusion of arterial spin labeling of MRI and neuropsychological scale in patients with Alzheimer's disease and mild cognitive impairment[J]. Chin J Magn Reson Imag, 2017, 8(2): 81-86. DOI: 10.12015/issn.1674-8034.2017.02.001.
[55]
TIAN Y T, LI C M, CHEN M. From research to clinic: the huge potential about application of magnetic resonance imaging in neurodegenerative disease[J]. Chin J Magn Reson Imag, 2023, 14(1): 1-5, 19. DOI: 10.12015/issn.1674-8034.2023.01.001.
[56]
DUPONT P. A role of PET/MR imaging in dementia?[J]. Semin Nucl Med, 2021, 51(3): 296-302. DOI: 10.1053/j.semnuclmed.2021.01.003.
[57]
OKAZAWA H, IKAWA M, JUNG M, et al. Multimodal analysis using[11C]PiB-PET/MRI for functional evaluation of patients with Alzheimer's disease[J/OL]. EJNMMI Res, 2020, 10(1): 30 [2024-01-28]. https://pubmed.ncbi.nlm.nih.gov/32232573/. DOI: 10.1186/s13550-020-00619-z.
[58]
ZHANG M, GUAN Z Y, ZHANG Y Y, et al. Disrupted coupling between salience network segregation and glucose metabolism is associated with cognitive decline in Alzheimer's disease - A simultaneous resting-state FDG-PET/fMRI study[J/OL]. Neuroimage Clin, 2022, 34: 102977 [2024-05-18]. https://doi.org/10.1016/j.nicl.2022. DOI: 10.1016/j.nicl.2022.102977.
[59]
CHEN Y F, WANG J K, CUI C L, et al. Evaluating the association between brain atrophy, hypometabolism, and cognitive decline in Alzheimer's disease: a PET/MRI study[J]. Aging, 2021, 13(5): 7228-7246. DOI: 10.18632/aging.202580.
[60]
MALEKI BALAJOO S, RAHMANI F, KHOSROWABADI R, et al. Decoupling of regional neural activity and inter-regional functional connectivity in Alzheimer's disease: a simultaneous PET/MR study[J]. Eur J Nucl Med Mol Imaging, 2022, 49(9): 3173-3185. DOI: 10.1007/s00259-022-05692-1.
[61]
ZHU B, LIU J Z, CAULEY S F, et al. Image reconstruction by domain-transform manifold learning[J]. Nature, 2018, 555(7697): 487-492. DOI: 10.1038/nature25988.
[62]
ZAHARCHUK G. Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning[J]. Eur J Nucl Med Mol Imaging, 2019, 46(13): 2700-2707. DOI: 10.1007/s00259-019-04374-9.
[63]
GONG K, HAN P K, JOHNSON K A, et al. Attenuation correction using deep Learning and integrated UTE/multi-echo Dixon sequence: evaluation in amyloid and tau PET imaging[J]. Eur J Nucl Med Mol Imaging, 2021, 48(5): 1351-1361. DOI: 10.1007/s00259-020-05061-w.
[64]
CHEN K T, TOUEG T N, KORAN M E I, et al. True ultra-low-dose amyloid PET/MRI enhanced with deep learning for clinical interpretation[J]. Eur J Nucl Med Mol Imaging, 2021, 48(8): 2416-2425. DOI: 10.1007/s00259-020-05151-9.
[65]
MEHRANIAN A, WOLLENWEBER S D, WALKER M D, et al. Deep learning-based time-of-flight (ToF) image enhancement of non-ToF PET scans[J]. Eur J Nucl Med Mol Imaging, 2022, 49(11): 3740-3749. DOI: 10.1007/s00259-022-05824-7.
[66]
SILVA M V F, LOURES C M G, ALVES L C V, et al. Alzheimer's disease: risk factors and potentially protective measures[J/OL]. J Biomed Sci, 2019, 26(1): 33 [2024-01-28]. https://doi.org/10.1186/s12929-019-0524-y. DOI: 10.1186/s12929-019-0524-y.
[67]
SCHELTENS P, BLENNOW K, BRETELER M M B, et al. Alzheimer's disease[J]. Lancet, 2016, 388(10043): 505-517. DOI: 10.1016/s0140-6736(15)01124-1.

PREV Dynamic functional connectivity in autism spectrum disorders: applications and research advances
NEXT Research progress on the glymphatic system of patients with central nervous system diseases based on diffusion tensor image analysis along the perivascular space
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn