Share:
Share this content in WeChat
X
Review
The principle of oscillating gradient spin echo in diffusion magnetic resonance imaging and its application in gliomas
LU Jue  WANG Jing 

Cite this article as: LU J, WANG J. The principle of oscillating gradient spin echo in diffusion magnetic resonance imaging and its application in gliomas[J]. Chin J Magn Reson Imaging, 2024, 15(6): 185-189. DOI:10.12015/issn.1674-8034.2024.06.029.


[Abstract] Gliomas are the most common primary central nervous system tumors in adults with high mortality rate and strong invasiveness. The tumor grading and genetic phenotype heterogeneity of gliomas will affect the formulation of treatment plans and prognosis inference. Post-treatment efficacy evaluation and early diagnosis of tumor recurrence can help improve patient survival. Diffusion magnetic resonance imaging based on oscillatory gradient spin echo (OGSE) is a novel diffusion MRI technique that has broad application prospects in the imaging diagnosis of gliomas by detecting microstructure features, such as cell diameter, cell density, intracellular and extracellular volume fraction. This paper reviewed the technical principles of OGSE imaging, research progress in classification, prediction of molecular type, response evaluation and differential diagnosis of brain glioma and limitations of OGSE imaging applications, providing a new perspective for preoperative diagnosis and postoperative evaluation of glioblastoma.
[Keywords] glioma;oscillating gradient spin echo;diffusion magnetic resonance imaging;magnetic resonance imaging;microstructure imaging;tumor grading;molecular typing prediction;response evaluation

LU Jue1, 2   WANG Jing1, 2*  

1 Department of Radiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

2 Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China

Corresponding author: WANG J, E-mail: xhwangjing@hust.edu.cn

Conflicts of interest   None.

Received  2024-03-08
Accepted  2024-06-03
DOI: 10.12015/issn.1674-8034.2024.06.029
Cite this article as: LU J, WANG J. The principle of oscillating gradient spin echo in diffusion magnetic resonance imaging and its application in gliomas[J]. Chin J Magn Reson Imaging, 2024, 15(6): 185-189. DOI:10.12015/issn.1674-8034.2024.06.029.

[1]
OSTROM Q T, CIOFFI G, WAITE K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018[J]. Neuro Oncol, 2021, 23: iii1-ii105. DOI: 10.1093/neuonc/noab200.
[2]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[3]
OSTROM Q T, PRICE M, NEFF C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019[J]. Neuro Oncol, 2022, 24(Suppl 5): v1-v95. DOI: 10.1093/neuonc/noac202.
[4]
ZHANG X L, WANG J. Advances in diffusion MRI based on oscillating gradient spin echo[J]. Chin J Magn Reson Imaging, 2023, 14(9): 198-202. DOI: 10.12015/issn.1674-8034.2023.09.036.
[5]
XU J. Probing neural tissues at small scales: Recent progress of oscillating gradient spin echo (OGSE) neuroimaging in humans[J/OL]. J Neurosci Methods, 2021, 349: 109024 [2024-03-08]. https://pubmed.ncbi.nlm.nih.gov/33333089/. DOI: 10.1016/j.jneumeth.2020.109024.
[6]
PARK J E, KIM H S, PARK S Y, et al. Identification of early response to anti-angiogenic therapy in recurrent glioblastoma: Amide proton transfer-weighted and perfusion-weighted MRI compared with diffusion-weighted MRI[J]. Radiology, 2020, 295(2): 397-406. DOI: 10.1148/radiol.2020191376.
[7]
MA X, CHENG K, CHENG G, et al. Apparent diffusion coefficient as imaging biomarker for identifying IDH mutation, 1p19q codeletion, and MGMT promoter methylation status in patients with glioma[J]. J Magn Reson Imaging, 2023, 58(3): 732-738. DOI: 10.1002/jmri.28589.
[8]
SHASHNI B, ARIYASU S, TAKEDA R, et al. Size-based differentiation of cancer and normal cells by a particle size analyzer assisted by a cell-recognition PC software[J]. Biol Pharm Bull, 2018, 41(4): 487-503. DOI: 10.1248/bpb.b17-00776.
[9]
LIU Y, ZHU W, ZHU H, et al. Characterization of orthotopic xenograft tumor of glioma stem cells (GSCs) on MRI, PET and immunohistochemical staining[J/OL]. Front Oncol, 2022, 12: 1085015 [2024-03-08]. https://pubmed.ncbi.nlm.nih.gov/36591483/. DOI: 10.3389/fonc.2022.1085015.
[10]
XU J, JIANG X, DEVAN S P, et al. MRI-cytometry: Mapping nonparametric cell size distributions using diffusion MRI[J]. Magn Reson Med, 2021, 85(2): 748-761. DOI: 10.1002/mrm.28454.
[11]
DEVAN S P, JIANG X, LUO G, et al. Selective cell size MRI differentiates brain tumors from radiation necrosis[J]. Cancer Res, 2022, 82(19): 3603-3613. DOI: 10.1158/0008-5472.CAN-21-2929.
[12]
XING S, LEVESQUE I R. A simulation study of cell size and volume fraction mapping for tissue with two underlying cell populations using diffusion-weighted MRI[J]. Magn Reson Med, 2021, 86(2): 1029-1044. DOI: 10.1002/mrm.28694.
[13]
HOFFMANN E, GERWING M, NILAND S, et al. Profiling specific cell populations within the inflammatory tumor microenvironment by oscillating-gradient diffusion-weighted MRI[J/OL]. J Immunother Cancer, 2023, 11(3): e006092 [2024-03-08]. DOI: 10.1136/jitc-2022-006092.
[14]
ZHANG H, LIU K, BA R, et al. Histological and molecular classifications of pediatric glioma with time-dependent diffusion MRI-based microstructural mapping[J]. Neuro Oncol, 2023, 25(6): 1146-1156. DOI: 10.1093/neuonc/noad003.
[15]
HERRERA S L, SHEFT M, MERCREDI M E, et al. Axon diameter inferences in the human corpus callosum using oscillating gradient spin echo sequences[J]. Magn Reson Imaging, 2022, 85: 64-70. DOI: 10.1016/j.mri.2021.10.014.
[16]
REYNAUD O, WINTERS K V, HOANG D M, et al. Pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (POMACE) in mouse gliomas[J]. NMR Biomed, 2016, 29(10):1350-1363. DOI: 10.1002/nbm.3577.
[17]
WIJNENGA M M J, FRENCH P J, DUBBINK H J, et al. The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis[J]. Neuro Oncol, 2018, 20(1): 103-112. DOI: 10.1093/neuonc/nox176.
[18]
WELLER M, VAN DEN BENT M, PREUSSER M, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood[J]. Nat Rev Clin Oncol, 2021, 18(3): 170-186. DOI: 10.1038/s41571-020-00447-z.
[19]
DISSAUX G, DISSAUX B, KABBAJ O E, et al. Radiotherapy target volume definition in newly diagnosed high grade glioma using 18F-FET PET imaging and multiparametric perfusion MRI: A prospective study (IMAGG)[J]. Radiother Oncol, 2020, 150: 164-171. DOI: 10.1016/j.radonc.2020.06.025.
[20]
HU L S, HAWKINS-DAARUD A, WANG L, et al. Imaging of intratumoral heterogeneity in high-grade glioma[J]. Cancer Lett, 2020, 477: 97-106. DOI: 10.1016/j.canlet.2020.02.025.
[21]
MAEKAWA T, HORI M, MURATA K, et al. Differentiation of high-grade and low-grade intra-axial brain tumors by time-dependent diffusion MRI[J]. Magn Reson Imaging, 2020, 72: 34-41. DOI: 10.1016/j.mri.2020.06.018.
[22]
FIGINI M, CASTELLANO A, BAILO M, et al. Comprehensive brain tumour characterisation with VERDICT-MRI: Evaluation of cellular and vascular measures validated by histology[J]. Cancers (Basel), 2023, 15(9): 2490 [2024-03-08]. https://pubmed.ncbi.nlm.nih.gov/37173965/. DOI: 10.3390/cancers15092490.
[23]
ZHU A, SHIH R, HUANG R Y, et al. Revealing tumor microstructure with oscillating diffusion encoding MRI in pre-surgical and post-treatment glioma patients[J]. Magn Reson Med, 2023, 90(5): 1789-1801. DOI: 10.1002/mrm.29758.
[24]
GRITSCH S, BATCHELOR T T, GONZALEZ CASTRO L N. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system[J]. Cancer, 2022, 128(1): 47-58. DOI: 10.1002/cncr.33918.
[25]
BERGER T R, WEN P Y, LANG-ORSINI M, et al. World Health Organization 2021 Classification of Central Nervous System Tumors and Implications for Therapy for Adult-Type Gliomas: A Review[J]. JAMA Oncol, 2022, 8(10): 1493-1501. DOI: 10.1001/jamaoncol.2022.2844.
[26]
NABORS L B, PORTNOW J, AHLUWALIA M, et al. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2020, 18(11): 1537-1570. DOI: 10.6004/jnccn.2020.0052.
[27]
NILSSON M, ENGLUND E, SZCZEPANKIEWICZ F, et al. Imagingbrain tumour microstructure[J]. Neuroimage, 2018, 182: 232-250. DOI: 10.1016/j.neuroimage.2018.04.075.
[28]
WEN P Y, WELLER M, LEE E Q, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions[J]. Neuro Oncol, 2020, 22(8): 1073-1113. DOI: 10.1093/neuonc/noaa106.
[29]
YOUNG J S, MORSHED R A, HERVEY-JUMPER S L, et al. The surgical management of diffuse gliomas: Current state of neurosurgical management and future directions[J]. Neuro Oncol, 2023, 25(12):2117-2133. DOI: 10.1093/neuonc/noad133.
[30]
WEN P Y, VAN DEN BENT M, YOUSSEF G, et al. RANO 2.0: Update to the Response Assessment in Neuro-Oncology Criteria for High- and Low-Grade Gliomas in Adults[J]. J Clin Oncol, 2023, 41(33): 5187-5199. DOI: 10.1200/JCO.23.01059.
[31]
ELLINGSON B M, BENDSZUS M, BOXERMAN J, et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials[J]. Neuro Oncol, 2015, 17(9): 1188-1198. DOI: 10.1093/neuonc/nov095.
[32]
WAMELINK I J H G, AZIZOVA A, BOOTH T C, et al. Brain tumor imaging without gadolinium-based contrast agents: Feasible or fantasy?[J/OL]. Radiology, 2024, 310(2): e230793 [2024-03-08]. https://pubmed.ncbi.nlm.nih.gov/38319162/. DOI: 10.1148/radiol.230793.
[33]
CECCON G, LOHMANN P, WERNER J M, et al. Early Treatment Response Assessment Using 18F-FET PET Compared with Contrast-Enhanced MRI in Glioma Patients After Adjuvant Temozolomide Chemotherapy[J]. J Nucl Med, 2021, 62(7): 918-925. DOI: 10.2967/jnumed.120.254243.
[34]
WERNER J M, WELLER J, CECCON G, et al. Diagnosis of pseudoprogression following lomustine-temozolomide chemoradiation in newly diagnosed glioblastoma patients using FET-PET[J]. Clin Cancer Res, 2021, 27(13): 3704-3713. DOI: 10.1158/1078-0432.CCR-21-0471.
[35]
BARAJAS R F, HAMILTON B E, SCHWARTZ D, et al. Combined iron oxide nanoparticle ferumoxytol and gadolinium contrast enhanced MRI define glioblastoma pseudoprogression[J]. Neuro Oncol, 2019, 21(4): 517-526. DOI: 10.1093/neuonc/noy160.
[36]
YOUNG J S, AL-ADLI N, SCOTFORD K, et al. Pseudoprogression versus true progression in glioblastoma: what neurosurgeons need to know[J]. J Neurosurg, 2023, 139(3): 748-759. DOI: 10.3171/2022.12.JNS222173.
[37]
SIDIBE I, TENSAOUTI F, GILHODES J, et al. Pseudoprogression in GBM versus true progression in patients with glioblastoma: A multiapproach analysis[J/OL]. Radiother Oncol, 2023, 181: 109486 [2024-03-08]. https://pubmed.ncbi.nlm.nih.gov/36706959/. DOI: 10.1016/j.radonc.2023.109486.
[38]
BONGERS A, HAU E, SHEN H. Short diffusion time diffusion-weighted imaging with oscillating gradient preparation as an early magnetic resonance imaging biomarker for radiation therapy response monitoring in glioblastoma: A preclinical feasibility study[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1014-1023. DOI: 10.1016/j.ijrobp.2017.12.280.
[39]
COLVIN D C, LOVELESS M E, DOES M D, et al. Earlier detection of tumor treatment response using magnetic resonance diffusion imaging with oscillating gradients[J]. Magn Reson Imaging, 2011, 29(3): 315-323. DOI: 10.1016/j.mri.2010.10.003.
[40]
SCHAFF L R, MELLINGHOFF I K. Glioblastoma and other primary brain malignancies in adults: A review[J]. JAMA, 2023, 329(7): 574-587. DOI: 10.1001/jama.2023.0023.
[41]
MAEKAWA T, HORI M, MURATA K, et al. Investigation of time-dependent diffusion in extra-axial brain tumors using oscillating-gradient spin-echo[J]. Magn Reson Imaging, 2023, 96: 67-74. DOI: 10.1016/j.mri.2022.11.010.
[42]
KAMIMURA K, KAMIMURA Y, NAKANO T, et al. Differentiating brain metastasis from glioblastoma by time-dependent diffusion MRI[J/OL]. Cancer Imaging, 2023, 23(1): 75 [2024-03-08]. https://pubmed.ncbi.nlm.nih.gov/37553578/. DOI: 10.1186/s40644-023-00595-2.
[43]
ANDICA C, HORI M, KAMIYA K, et al. Spatial restriction within intracranial epidermoid cysts observed using short diffusion-time diffusion-weighted imaging[J]. Magn Reson Med Sci, 2018, 17(3): 269-272. DOI: 10.2463/mrms.cr.2017-0111.
[44]
MAEKAWA T, HORI M, MURATA K, et al. Choroid plexus cysts analyzed using diffusion-weighted imaging with short diffusion-time[J]. Magn Reson Imaging, 2019, 57: 323-327. DOI: 10.1016/j.mri.2018.12.010.
[45]
MAEKAWA T, HORI M, MURATA K, et al. Time-dependent diffusion in brain abscesses investigated with oscillating-gradient spin-echo[J]. Magn Reson Med Sci, 2022, 21(4): 525-530. DOI: 10.2463/mrms.ici.2021-0083.
[46]
IIMA M, YAMAMOTO A, KATAOKA M, et al. Time-dependent diffusion MRI to distinguish malignant from benign head and neck tumors[J]. J Magn Reson Imaging, 2019, 50(1): 88-95. DOI: 10.1002/jmri.26578.
[47]
WU D, LIU D, HSU Y C, et al. Diffusion-prepared 3D gradient spin-echo sequence for improved oscillating gradient diffusion MRI[J]. Magn Reson Med, 2021, 85(1): 78-88. DOI: 10.1002/mrm.28401.
[48]
BORSOS K B, TSE D H Y, DUBOVAN P I, et al. Tuned bipolar oscillating gradients for mapping frequency dispersion of diffusion kurtosis in the human brain[J]. Magn Reson Med, 2023, 89(2): 756-766. DOI: 10.1002/mrm.29473.

PREV Research progress of MRI radiomics in pituitary neuroendocrine tumors
NEXT Research progress of magnetic resonance diffusion tensor imaging in glioma grading and genotype prediction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn