Share:
Share this content in WeChat
X
Review
Research Progress of ultra-high-field magnetic resonance imaging in musculoskeletal system
LIU Suwei  YUAN Huishu 

Cite this article as: LIU S W, YUAN H S. Research Progress of ultra-high-field magnetic resonance imaging in musculoskeletal system[J]. Chin J Magn Reson Imaging, 2024, 15(6): 224-228. DOI:10.12015/issn.1674-8034.2024.06.036.


[Abstract] Ultra-high-field MR (UHF-MR) has been a hot spot in clinical research for disease diagnosis and fine structure display. However, due to its inherent characteristics, the research of 7 T UHF-MR is mainly focused on the central nervous system and some musculoskeletal diseases. The advent of 5 T UHF-MR seems to bring new possibilities for ultra-high-field imaging of musculoskeletal and systemic systems. This paper focuses on reviewing the impact of the inherent physical properties of UHF-MR on the diagnosis of musculoskeletal system diseases, as well as the clinical research advancements of UHF-MR in musculoskeletal diseases. The aim is to enhance physicians' understanding of UHF-MR, broaden researchers' perspectives, further promote the development of novel contrast agents, the application of multimodal imaging techniques, and the integration of artificial intelligence-assisted diagnosis, thereby facilitating the clinical translation and application of UHF-MR in musculoskeletal system diseases.
[Keywords] ultra-high-field;magnetic resonance imaging;musculoskeletal system;cartilage;ligament

LIU Suwei   YUAN Huishu*  

Department of Radiology, Peking University Third Hospital, Beijing 100191, China

Corresponding author: YUAN H S, E-mail: huishuy@bjmu.edu.cn

Conflicts of interest   None.

Received  2024-03-14
Accepted  2024-06-03
DOI: 10.12015/issn.1674-8034.2024.06.036
Cite this article as: LIU S W, YUAN H S. Research Progress of ultra-high-field magnetic resonance imaging in musculoskeletal system[J]. Chin J Magn Reson Imaging, 2024, 15(6): 224-228. DOI:10.12015/issn.1674-8034.2024.06.036.

[1]
HEISS R, WEBER M A, BALBACH E, et al. Clinical application of ultrahigh-field-strength wrist MRI: a multireader 3-T and 7-T comparison study[J/OL]. Radiology, 2023, 307(2): e220753 [2024-05-31]. https://doi.org/10.1148/radiol.220753. DOI: 10.1148/radiol.220753.
[2]
RIZZO G, CRISTOFORETTI A, MARINETTI A, et al. Quantitative MRI T2 mapping is able to assess tissue quality after reparative and regenerative treatments of osteochondral lesions of the talus[J]. J Magn Reson Imaging, 2021, 54(5): 1572-1582. DOI: 10.1002/jmri.27754.
[3]
FEUERRIEGEL G C, MARTH A A, GERMANN C, et al. 7 T MRI of the cervical neuroforamen: assessment of nerve root compression and dorsal root Ganglia in patients with radiculopathy[J]. Invest Radiol, 2024, 59(6): 450-457. DOI: 10.1097/RLI.0000000000001039.
[4]
FAGAN A J, BITZ A K, BJÖRKMAN-BURTSCHER I M, et al. 7T MR safety[J]. J Magn Reson Imaging, 2021, 53(2): 333-346. DOI: 10.1002/jmri.27319.
[5]
LIN D J, WALTER S S, FRITZ J. Artificial intelligence-driven ultra-fast superresolution MRI: 10-fold accelerated musculoskeletal turbo spin echo MRI within reach[J]. Invest Radiol, 2023, 58(1): 28-42. DOI: 10.1097/RLI.0000000000000928.
[6]
VAN LEEUWEN F H P, LENA B, ZWANENBURG J J M, et al. Detecting low blood concentrations in joints using T1 and T2 mapping at 1.5, 3, and 7 T: an in vitro study[J/OL]. Eur Radiol Exp, 2021, 5(1): 51 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/34853955/. DOI: 10.1186/s41747-021-00251-z.
[7]
PAZAHR S, NANZ D, SUTTER R. 7 T musculoskeletal MRI: fundamentals and clinical implementation[J]. Invest Radiol, 2023, 58(1): 88-98. DOI: 10.1097/RLI.0000000000000896.
[8]
HEISS R, WEBER M A, BALBACH E L, et al. Variation in cartilage T2 and T2* mapping of the wrist: a comparison between 3- and 7-T MRI[J/OL]. Eur Radiol Exp, 2023, 7(1): 80 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/38093075/. DOI: 10.1186/s41747-023-00394-1.
[9]
MA Y J, JANG H, JERBAN S, et al. Making the invisible visible-ultrashort echo time magnetic resonance imaging: technical developments and applications[J/OL]. Appl Phys Rev, 2022, 9(4): 041303 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/36467869/. DOI: 10.1063/5.0086459.
[10]
ENGELKE K, CHAUDRY O, GAST L, et al. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: state of the art[J]. J Orthop Translat, 2023, 42: 57-72. DOI: 10.1016/j.jot.2023.07.005.
[11]
AMRAMI K K, CHEBROLU V V, FELMLEE J P, et al. 7T for clinical imaging of benign peripheral nerve tumors: preliminary results[J]. Acta Neurochir, 2023, 165(11): 3549-3558. DOI: 10.1007/s00701-023-05724-1.
[12]
SVEINSSON B, ROWE O E, STOCKMANN J P, et al. Feasibility of simultaneous high-resolution anatomical and quantitative magnetic resonance imaging of sciatic nerves in patients with Charcot-Marie-Tooth type 1A (CMT1A) at 7T[J]. Muscle Nerve, 2022, 66(2): 206-211. DOI: 10.1002/mus.27647.
[13]
PACHOWSKY M L, SÖLLNER S, GELSE K, et al. Primary anterior cruciate ligament repair-morphological and quantitative assessment by 7-T MRI and clinical outcome after 1.5 years[J/OL]. Eur Radiol, 2024 [2024-05-31]. https://doi.org/10.1007/s00330-024-10603-z. DOI: 10.1007/s00330-024-10603-z.
[14]
EKMAN L, DAHLIN L B, ANDERSSON G S, et al. Diagnostic contribution of multi-frequency vibrometry to detection of peripheral neuropathy in type 1 diabetes mellitus compared with nerve conduction studies[J/OL]. PLoS One, 2024, 19(1): e0296661 [2024-05-31] https://doi.org/10.1371/journal.pone.0296661. DOI: 10.1371/journal.pone.0296661.
[15]
CHEN Y L, CHEN W. Radial planes in hip magnetic resonance imaging: techniques, applications, and perspectives[J]. J Magn Reson Imaging, 2024, 60(1): 8-20. DOI: 10.1002/jmri.29029.
[16]
BHOSALE A A, YING L L, ZHANG X L. Design of a 13-Channel hybrid RF array with field rectification of dielectric material for foot/ankle imaging at 7T[J/OL]. Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib, 2022, 30: 4433 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/36071700/.
[17]
FRIEBE B, RICHTER M, PENZLIN S, et al. Assessment of low-grade meniscal and cartilage damage of the knee at 7 T: a comparison to 3 T imaging with arthroscopic correlation[J]. Invest Radiol, 2018, 53(7): 390-396. DOI: 10.1097/RLI.0000000000000456.
[18]
MENON R G, CHANG G, REGATTE R R. Musculoskeletal MR imaging applications at ultra-high (7T) field strength[J]. Magn Reson Imaging Clin N Am, 2021, 29(1): 117-127. DOI: 10.1016/j.mric.2020.09.008.
[19]
XIONG Y, HE T X, LIU W V, et al. Quantitative assessment of lumbar spine bone marrow in patients with different severity of CKD by IDEAL-IQ magnetic resonance sequence[J/OL]. Front Endocrinol, 2022, 13: 980576 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/36204094/. DOI: 10.3389/fendo.2022.980576.
[20]
SOLDATI E, VICENTE J, GUENOUN D, et al. Validation and optimization of proximal femurs microstructure analysis using high field and ultra-high field MRI[J/OL]. Diagnostics, 2021, 11(9): 1603 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/34573945/. DOI: 10.3390/diagnostics11091603.
[21]
SOLDATI E, PITHIOUX M, GUENOUN D, et al. Assessment of Bone Microarchitecture in Fresh Cadaveric Human Femurs: what Could Be the Clinical Relevance of Ultra-High Field MRI[J/OL]. Diagnostics, 2022, 12(2): 439 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/35204529/. DOI: 10.3390/diagnostics12020439.
[22]
JARRAYA M, HEISS R, DURYEA J, et al. Bone structure analysis of the radius using ultrahigh field (7T) MRI: relevance of technical parameters and comparison with 3T MRI and radiography[J/OL]. Diagnostics, 2021, 11(1): 110 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/33445536/. DOI: 10.3390/diagnostics11010110.
[23]
CHANG G, DENIZ C M, HONIG S, et al. MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging[J]. J Magn Reson Imaging, 2014, 39(6): 1384-1393. DOI: 10.1002/jmri.24305.
[24]
AFSAHI A M, SEDAGHAT S, MOAZAMIAN D, et al. Articular cartilage assessment using ultrashort echo time MRI: a review[J/OL]. Front Endocrinol, 2022, 13: 892961 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/35692400/. DOI: 10.3389/fendo.2022.892961.
[25]
SHOJI T, SAKA H, INOUE T, et al. Preoperative T2 mapping MRI of articular cartilage values predicts postoperative osteoarthritis progression following rotational acetabular osteotomy[J]. Bone Joint J, 2021, 103-B(9): 1472-1478. DOI: 10.1302/0301-620X.103B9.BJJ-2021-0266.R1.
[26]
JURAS V, SCHREINER M, LAURENT D, et al. The comparison of the performance of 3 T and 7 T T2 mapping for untreated low-grade cartilage lesions[J]. Magn Reson Imaging, 2019, 55: 86-92. DOI: 10.1016/j.mri.2018.09.021.
[27]
KRUG R, LARSON P E, WANG C S, et al. Ultrashort echo time MRI of cortical bone at 7 tesla field strength: a feasibility study[J]. J Magn Reson Imaging, 2011, 34(3): 691-695. DOI: 10.1002/jmri.22648.
[28]
JURAS V, ZBYN S, PRESSL C, et al. Regional variations of T2* in healthy and pathologic Achilles tendon in vivo at 7 Tesla: preliminary results[J]. Magn Reson Med, 2012, 68(5): 1607-1613. DOI: 10.1002/mrm.24136.
[29]
PICCOLO C L, MALLIO C A, VACCARINO F, et al. Imaging of knee osteoarthritis: a review of multimodal diagnostic approach[J]. Quant Imaging Med Surg, 2023, 13(11): 7582-7595. DOI: 10.21037/qims-22-1392.
[30]
KHAN M C M, O'DONOVAN J, CHARLTON J M, et al. The influence of running on lower limb cartilage: a systematic review and meta-analysis[J]. Sports Med, 2022, 52(1): 55-74. DOI: 10.1007/s40279-021-01533-7.
[31]
WYATT C, GUHA A, VENKATACHARI A, et al. Improved differentiation between knees with cartilage lesions and controls using 7T relaxation time mapping[J]. J Orthop Translat, 2015, 3(4): 197-204. DOI: 10.1016/j.jot.2015.05.003.
[32]
NOEHREN B, HARDY P A, ANDERSEN A, et al. T1ρ imaging as a non-invasive assessment of collagen remodelling and organization in human skeletal muscle after ligamentous injury[J]. J Physiol, 2021, 599(23): 5229-5242. DOI: 10.1113/JP281964.
[33]
HAYASHI D, ROEMER F W, LINK T, et al. Latest advancements in imaging techniques in OA[J/OL]. Ther Adv Musculoskelet Dis, 2022, 14: 1759720X221146621 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/36601087/. DOI: 10.1177/1759720X221146621.
[34]
ZAISS M, JIN T, KIM S G, et al. Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields[J/OL]. NMR Biomed, 2023, 36(6): e4961 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/35704180/. DOI: 10.1002/nbm.4961.
[35]
TAKAHASHI Y, SAITO S, KIOKA H, et al. Mouse skeletal muscle creatine chemical exchange saturation transfer (CrCEST) imaging at 11.7T MRI[J]. J Magn Reson Imaging, 2020, 51(2): 563-570. DOI: 10.1002/jmri.26844.
[36]
KLEPOCHOVÁ R, NIESS F, MEYERSPEER M, et al. Correlation between skeletal muscle acetylcarnitine and phosphocreatine metabolism during submaximal exercise and recovery: interleaved 1H/31P MRS 7T study[J/OL]. Sci Rep, 2024, 14: 3254 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/35704180/. DOI: 10.1038/s41598-024-53221-x.
[37]
NANGA R P R, ELLIOTT M A, SWAIN A, et al. Identification of new resonances in downfield 1 H MRS of human calf muscle in vivo: potentially metabolite precursors for skeletal muscle NAD[J]. Magn Reson Med, 2023, 90(3): 1166-1171. DOI: 10.1002/mrm.29687.
[38]
HAYASHI D, ROEMER F W, TOL J L, et al. Emerging quantitative imaging techniques in sports medicine[J/OL]. Radiology, 2023, 308(2): e221531 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/37552087/. DOI: 10.1148/radiol.221531.
[39]
ZBÝŇ Š, LUDWIG K D, WATKINS L E, et al. Changes in tissue sodium concentration and sodium relaxation times during the maturation of human knee cartilage: ex vivo 23 Na MRI study at 10.5 T[J]. Magn Reson Med, 2024, 91(3): 1099-1114. DOI: 10.1002/mrm.29930.
[40]
EMANUEL K S, KELLNER L J, PETERS M J M, et al. The relation between the biochemical composition of knee articular cartilage and quantitative MRI: a systematic review and meta-analysis[J]. Osteoarthritis Cartilage, 2022, 30(5): 650-662. DOI: 10.1016/j.joca.2021.10.016.
[41]
TRATTNIG S, WELSCH G H, JURAS V, et al. 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results[J]. Radiology, 2010, 257(1): 175-184. DOI: 10.1148/radiol.10100279.
[42]
WEBER M A, NAGEL A M, MARSCHAR A M, et al. 7-T (35)Cl and (23)Na MR imaging for detection of mutation-dependent alterations in muscular edema and fat fraction with sodium and chloride concentrations in muscular periodic paralyses[J]. Radiology, 2016, 280(3): 848-859. DOI: 10.1148/radiol.2016151617.
[43]
NIESS F, SCHMID A I, BOGNER W, et al. Interleaved 31 P MRS/1 H ASL for analysis of metabolic and functional heterogeneity along human lower leg muscles at 7T[J]. Magn Reson Med, 2020, 83(6): 1909-1919. DOI: 10.1002/mrm.28088.
[44]
HOOIJMANS M T, DOORENWEERD N, BALIGAND C, et al. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24-month follow-up[J/OL]. PLoS One, 2017, 12(8): e0182086 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/28763477/. DOI: 10.1371/journal.pone.0182086.
[45]
KASSEY V B, WALLE M, EGAN J, et al. Quantitative 31P magnetic resonance imaging on pathologic rat bones by ZTE at 7T[J/OL]. Bone, 2024, 180: 116996 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/38154764/. DOI: 10.1016/j.bone.2023.116996.
[46]
GAST L V, BAIER L M, CHAUDRY O, et al. Assessing muscle-specific potassium concentrations in human lower leg using potassium magnetic resonance imaging[J/OL]. NMR Biomed, 2023, 36(1): e4819 [2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/35994248/. DOI: 10.1002/nbm.4819.

PREV Research progress of CT and MRI with radiomics to predict microsatellite instability in colorectal cancer
NEXT Principles and clinical advances of magnetic resonance spin lock imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn