Share:
Share this content in WeChat
X
Review
Principles and clinical advances of magnetic resonance spin lock imaging
HE Siyi  LI Bowei  CHENG Guanxun 

Cite this article as: HE S Y, LI B W, CHENG G X. Principles and clinical advances of magnetic resonance spin lock imaging[J]. Chin J Magn Reson Imaging, 2024, 15(6): 229-234. DOI:10.12015/issn.1674-8034.2024.06.037.


[Abstract] Magnetic resonance spin-locked imaging (T1ρ imaging) can detect changes in tissue metabolism and biochemical information at the molecular level, the T1ρ value is more sensitive than the T1 and T2 values to reflect the low-frequency movement between water molecules and macromolecules. In recent years, researchers have continuously improved this sequence and gradually applied it to a variety of diseases including osteoarthritis, intervertebral disc degeneration, cardiomyopathy, liver fibrosis, renal fibrosis, Alzheimer's disease, multiple sclerosis, and brain gliomas. This article will review the principles of T1ρ imaging, factors influencing T1ρ values, and the current research status of clinical applications of T1ρ imaging, aiming to promote the continuous maturity of T1ρ technology and assist in guiding clinical diagnosis and treatment.
[Keywords] osteoarthritis;cardiomyopathy;liver fibrosis;spin-lock imaging;magnetic resonance imaging

HE Siyi1, 2   LI Bowei1   CHENG Guanxun1*  

1 Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen 518000, China

2 Peking University Health Science Center, Beijing 100191, China

Corresponding author: CHENG G X, E-mail: 18903015678@189.cn

Conflicts of interest   None.

Received  2024-03-15
Accepted  2024-05-31
DOI: 10.12015/issn.1674-8034.2024.06.037
Cite this article as: HE S Y, LI B W, CHENG G X. Principles and clinical advances of magnetic resonance spin lock imaging[J]. Chin J Magn Reson Imaging, 2024, 15(6): 229-234. DOI:10.12015/issn.1674-8034.2024.06.037.

[1]
SEPPONEN R E, SIPPONEN J T, TANTTU J I. A method for chemical shift imaging: demonstration of bone marrow involvement with proton chemical shift imaging[J]. J Comput Assist Tomogr, 1984, 8(4): 585-587. DOI: 10.1097/00004728-198408000-00001.
[2]
SHARAFI A, ZIBETTI M V W, CHANG G, et al. MR fingerprinting for rapid simultaneous T1, T2, and T1ρ relaxation mapping of the human articular cartilage at 3T[J]. Magn Reson Med, 2020, 84(5): 2636-2644. DOI: 10.1002/mrm.28308.
[3]
TAKASHIMA H, YOSHIMOTO M, OGON I, et al. T1rho, T2, and T2* relaxation time based on grading of intervertebral disc degeneration[J]. Acta Radiol, 2023, 64(3): 1116-1121. DOI: 10.1177/02841851221113936.
[4]
WANG C H, ZHENG J, SUN J Y, et al. Endogenous contrast T1rho cardiac magnetic resonance for myocardial fibrosis in hypertrophic cardiomyopathy patients[J]. J Cardiol, 2015, 66(6): 520-526. DOI: 10.1016/j.jjcc.2015.03.005.
[5]
THOMPSON E W, KAMESH IYER S, SOLOMON M P, et al. Endogenous T1ρ cardiovascular magnetic resonance in hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 120 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/34689798/. DOI: 10.1186/s12968-021-00813-5.
[6]
COLETTI C, FOTAKI A, TOURAIS J, et al. Robust cardiac T1ρ mapping at 3T using adiabatic spin-lock preparations[J]. Magn Reson Med, 2023, 90(4): 1363-1379. DOI: 10.1002/mrm.29713.
[7]
WU L, CARCHI C, MICHAELI S, et al. Alternating Look-Locker for quantitative T1, T1ρ and B1 3D MRI mapping[J]. Magn Reson Med, 2024, 91(1): 149-161. DOI: 10.1002/mrm.29839.
[8]
ZIBETTI M V W, DE MOURA H L, KEERTHIVASAN M B, et al. Optimizing variable flip angles in magnetization-prepared gradient-echo sequences for efficient 3D-T1ρ mapping[J]. Magn Reson Med, 2023, 90(4): 1465-1483. DOI: 10.1002/mrm.29740.
[9]
ZHU Y J, LIU Y Y, YING L, et al. A 4-minute solution for submillimeter whole-brain T1ρ quantification[J]. Magn Reson Med, 2021, 85(6): 3299-3307. DOI: 10.1002/mrm.28656.
[10]
BUSTIN A, WITSCHEY W R T, VAN HEESWIJK R B, et al. Magnetic resonance myocardial T1ρ mapping: technical overview, challenges, emerging developments, and clinical applications[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 34 [2024-02-04]. https://pubmed.ncbi.nlm.nih.gov/37331930/. DOI: 10.1186/s12968-023-00940-1.
[11]
COBB J G, XIE J P, GORE J C. Contributions of chemical exchange to T1ρ dispersion in a tissue model[J]. Magn Reson Med, 2011, 66(6): 1563-1571. DOI: 10.1002/mrm.22947.
[12]
OWUSU N, JOHNSON C P, KEARNEY W, et al. R1ρ sensitivity to pH and other compounds at clinically accessible spin-lock fields in the presence of proteins[J/OL]. NMR Biomed, 2020, 33(2): e4217 [2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/31742802/. DOI: 10.1002/nbm.4217.
[13]
ALI S O, FESSAS P, KAGGIE J D, et al. Evaluation of the sensitivity of R1ρ MRI to pH and macromolecular density[J]. Magn Reson Imaging, 2019, 58: 156-161. DOI: 10.1016/j.mri.2019.02.004.
[14]
VILLANUEVA-MEYER J E, BARAJAS R F, MABRAY M C, et al. Differentiation of brain tumor-related edema based on 3D T1rho imaging[J]. Eur J Radiol, 2017, 91: 88-92. DOI: 10.1016/j.ejrad.2017.03.022.
[15]
MENON R G, MONGA A, KIJOWSKI R, et al. Characterization of age-related and sex-related differences of relaxation parameters in the intervertebral disc using MR-fingerprinting[J]. J Magn Reson Imaging, 2024, 59(4): 1312-1324. DOI: 10.1002/jmri.28925.
[16]
TAMAGAWA S, SAKAI D, NOJIRI H, et al. Imaging evaluation of intervertebral disc degeneration and painful discs-advances and challenges in quantitative MRI[J/OL]. Diagnostics, 2022, 12(3): 707 [2024-01-23]. https://pubmed.ncbi.nlm.nih.gov/35328260/. DOI: 10.3390/diagnostics12030707.
[17]
ZHAO F, ZHOU N, WANG J L, et al. Collagen deposition in the liver is strongly and positively associated with T1rho elongation while fat deposition is associated with T1rho shortening: an experimental study of methionine and choline-deficient (MCD) diet rat model[J]. Quant Imaging Med Surg, 2020, 10(12): 2307-2321. DOI: 10.21037/qims-20-651.
[18]
XIE S S, QI H X, LI Q, et al. Liver injury monitoring, fibrosis staging and inflammation grading using T1rho magnetic resonance imaging: an experimental study in rats with carbon tetrachloride intoxication[J/OL]. BMC Gastroenterol, 2020, 20(1): 14 [2024-02-12]. https://pubmed.ncbi.nlm.nih.gov/31941457/. DOI: 10.1186/s12876-020-1161-3.
[19]
KIJOWSKI R, SHARAFI A, ZIBETTI M V W, et al. Age-dependent changes in knee cartilage T1, T2, and T1p simultaneously measured using MRI fingerprinting[J]. J Magn Reson Imaging, 2023, 57(6): 1805-1812. DOI: 10.1002/jmri.28451.
[20]
BONNHEIM N B, LAZAR A A, KUMAR A, et al. ISSLS Prize in Bioengineering Science 2023: age- and sex-related differences in lumbar intervertebral disc degeneration between patients with chronic low back pain and asymptomatic controls[J]. Eur Spine J, 2023, 32(5): 1517-1524. DOI: 10.1007/s00586-023-07542-6.
[21]
DENG W, XUE Y C, LI Y G, et al. Normal values of magnetic resonance T1ρ relaxation times in the adult heart at 1.5T MRI[J]. J Magn Reson Imaging, 2023, 58(2): 477-485. DOI: 10.1002/jmri.28506.
[22]
DENG W, WANG Z, JIA Z R, et al. Cardiac T1ρ mapping values affected by age and sex in a healthy Chinese cohort[J/OL]. J Magn Reson Imaging, 2024 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/38168067/. DOI: 10.1002/jmri.29196.
[23]
PALA S, HÄNNINEN N E, NYKÄNEN O, et al. New methods for robust continuous wave T1ρ relaxation preparation[J/OL]. NMR Biomed, 2023, 36(2): e4834 [2024-02-11]. https://pubmed.ncbi.nlm.nih.gov/36115012/. DOI: 10.1002/nbm.4834.
[24]
MITREA B G, KRAFFT A J, SONG R T, et al. Paired self-compensated spin-lock preparation for improved T1ρ quantification[J]. J Magn Reson, 2016, 268: 49-57. DOI: 10.1016/j.jmr.2016.04.017.
[25]
GRAM M, SEETHALER M, GENSLER D, et al. Balanced spin-lock preparation for B1-insensitive and B0-insensitive quantification of the rotating frame relaxation time T1ρ[J]. Magn Reson Med, 2021, 85(5): 2771-2780. DOI: 10.1002/mrm.28585.
[26]
ZU Z L, ADELNIA F, HARKINS K, et al. Correction of errors in estimates of T1ρ at low spin-lock amplitudes in the presence of B0 and B1 inhomogeneities[J/OL]. NMR Biomed, 2023: e4951 [2024-01-12]. https://pubmed.ncbi.nlm.nih.gov/37070215/. DOI: 10.1002/nbm.4951.
[27]
TONG M W, TOLPADI A A, BHATTACHARJEE R, et al. Synthetic knee MRI T1p maps as an avenue for clinical translation of quantitative osteoarthritis biomarkers[J/OL]. Bioengineering, 2023, 11(1): 17 [2024-01-16]. https://pubmed.ncbi.nlm.nih.gov/38247894/. DOI: 10.3390/bioengineering11010017.
[28]
YANG Z J, XIE C, OU S W, et al. Cutoff points of T1 rho/T2 mapping relaxation times distinguishing early-stage and advanced osteoarthritis[J]. Arch Med Sci, 2022, 18(4): 1004-1015. DOI: 10.5114/aoms/140714.
[29]
EIJKENBOOM J F A, VAN DER HEIJDEN R A, DE KANTER J L M, et al. Patellofemoral alignment and geometry and early signs of osteoarthritis are associated in patellofemoral pain population[J]. Scand J Med Sci Sports, 2020, 30(5): 885-893. DOI: 10.1111/sms.13641.
[30]
WANG K Y, ZHANG W B, LI S M, et al. Noncontrast T1ρ dispersion imaging is sensitive to diffuse fibrosis: a cardiovascular magnetic resonance study at 3T in hypertrophic cardiomyopathy[J/OL]. Magn Reson Imaging, 2022, 91: 1-8 [2024-01-12]. https://pubmed.ncbi.nlm.nih.gov/35525524/. DOI: 10.1016/j.mri.2022.05.001.
[31]
DONG Z X, YIN G, YANG K, et al. Endogenous assessment of late gadolinium enhancement grey zone in patients with non-ischaemic cardiomyopathy with T1ρ and native T1 mapping[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(4): 492-502. DOI: 10.1093/ehjci/jeac128.
[32]
QI H K, BUSTIN A, KUESTNER T, et al. Respiratory motion-compensated high-resolution 3D whole-heart T1ρ mapping[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 12 [2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/32014001/. DOI: 10.1186/s12968-020-0597-5.
[33]
BUSTIN A, TOUPIN S, SRIDI S, et al. Endogenous assessment of myocardial injury with single-shot model-based non-rigid motion-corrected T1 rho mapping[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 119 [2024-01-13]. https://pubmed.ncbi.nlm.nih.gov/34670572/. DOI: 10.1186/s12968-021-00781-w.
[34]
STECCO A, COWMAN M, PIRRI N, et al. Densification: hyaluronan aggregation in different human organs[J/OL]. Bioengineering, 2022, 9(4): 159 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/35447719/. DOI: 10.3390/bioengineering9040159.
[35]
LU Y M, WANG Q F, ZHANG T T, et al. Staging liver fibrosis: comparison of native T1 mapping, T2 mapping, and T1ρ: an experimental study in rats with bile duct ligation and carbon tetrachloride at 11.7T MRI[J]. J Magn Reson Imaging, 2022, 55(2): 507-517. DOI: 10.1002/jmri.27822.
[36]
SUYAMA Y, TOMITA K, SOGA S, et al. T1ρ magnetic resonance imaging value as a potential marker to assess the severity of liver fibrosis: a pilot study[J/OL]. Eur J Radiol Open, 2021, 8: 100321 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/33490312/. DOI: 10.1016/j.ejro.2021.100321.
[37]
TAKAYAMA Y, NISHIE A, ISHIMATSU K, et al. Diagnostic potential of T1ρ and T2 relaxations in assessing the severity of liver fibrosis and necro-inflammation[J/OL]. Magn Reson Imaging, 2022, 87: 104-112. DOI: 10.1016/j.mri.2022.01.002.
[38]
LIU C Y, NODA C, VAN DER GEEST R J, et al. Sex-specific associations in multiparametric3 T MRI measurements in adult livers[J]. Abdom Radiol, 2023, 48(10): 3072-3078. DOI: 10.1007/s00261-023-03981-3.
[39]
SUN S S, ZHOU N, FENG Y J, et al. Evaluation of chronic pancreatitis with T1ρ MRI: a preliminary study[J]. J Magn Reson Imaging, 2021, 53(2): 577-584. DOI: 10.1002/jmri.27302.
[40]
CIOCHINA M, BALABAN D V, MANUCU G, et al. The impact of pancreatic exocrine diseases on the β-cell and glucose metabolism-a review with currently available evidence[J]. Biomolecules, 2022, 12(5): 618 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/35625546/. DOI: 10.3390/biom12050618.
[41]
MISHRA P, SAHU A, NAIK P K, et al. Islet dimensions and its impact on the cellular composition and insulin-secreting capacity: insights into the role of non-beta cells[J/OL]. Cureus, 2024, 16(1): e52428 [2024-01-03]. https://pubmed.ncbi.nlm.nih.gov/38371125/. DOI: 10.7759/cureus.52428.
[42]
DROTAR D M, MOJICA-AVILA A K, BLOSS D T, et al. Impaired islet function with normal exocrine enzyme secretion is consistent across the head, body, and tail pancreas regions in type 1 diabetes[J/OL]. bioRxiv, 2024: 2024.02.08.579175 [2024-01-27]. https://pubmed.ncbi.nlm.nih.gov/38405840/. DOI: 10.1101/2024.02.08.579175.
[43]
HU G W, LIANG W, WU M X, et al. Comparison of T1 mapping and T1rho values with conventional diffusion-weighted imaging to assess fibrosis in a rat model of unilateral ureteral obstruction[J]. Acad Radiol, 2019, 26(1): 22-29. DOI: 10.1016/j.acra.2018.03.023.
[44]
MIN S D, CHANG D, WANG Y C, et al. Novel small-molecule compound VCP979 attenuates renal fibrosis in male rats with unilateral ureteral obstruction[J]. Exp Biol Med, 2023, 248(4): 327-338. DOI: 10.1177/15353702221147569.
[45]
KIM S Y, KIM H, LEE J, et al. Quantitative magnetic resonance imaging of chronic kidney disease: an experimental in vivo study using rat chronic kidney disease models[J]. Acta Radiol, 2023, 64(1): 404-414. DOI: 10.1177/02841851211065143.
[46]
HECTORS S J, BANE O, KENNEDY P, et al. T1ρ mapping for assessment of renal allograft fibrosis[J]. J Magn Reson Imaging, 2019, 50(4): 1085-1091. DOI: 10.1002/jmri.26656.
[47]
SHAFFER J J, MANI M, SCHMITZ S L, et al. Proton exchange magnetic resonance imaging: current and future applications in psychiatric research[J/OL]. Front Psychiatry, 2020, 11: 532606 [2024-02-25]. https://pubmed.ncbi.nlm.nih.gov/33192650/. DOI: 10.3389/fpsyt.2020.532606.
[48]
HARIS M, YADAV S K, RIZWAN A, et al. T1rho MRI and CSF biomarkers in diagnosis of Alzheimer's disease[J]. Neuroimage Clin, 2015, 7: 598-604. DOI: 10.1016/j.nicl.2015.02.016.
[49]
BOLES PONTO L L, MAGNOTTA V A, MENDA Y, et al. Comparison of T1Rho MRI, glucose metabolism, and amyloid burden across the cognitive spectrum: a pilot study[J]. J Neuropsychiatry Clin Neurosci, 2020, 32(4): 352-361. DOI: 10.1176/appi.neuropsych.19100221.
[50]
MENON R G, SHARAFI A, MUCCIO M, et al. Three-dimensional multi-parameter brain mapping using MR fingerprinting[J/OL]. Res Sq, 2023, 2675278 [2024-01-20]. https://pubmed.ncbi.nlm.nih.gov/36993561/. DOI: 10.21203/rs.3.rs-2675278/v1.
[51]
MA S, WANG N, FAN Z Y, et al. Three-dimensional whole-brain simultaneous T1, T2, and T1ρ quantification using MR Multitasking: method and initial clinical experience in tissue characterization of multiple sclerosis[J]. Magn Reson Med, 2021, 85(4): 1938-1952. DOI: 10.1002/mrm.28553.
[52]
TERESHCHENKO A V, SCHULTZ J L, KUNNATH A J, et al. Subcortical T1-rho MRI abnormalities in juvenile-onset Huntington's disease[J/OL]. Brain Sci, 2020, 10(8): 533 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/32784364/. DOI: 10.3390/brainsci10080533.
[53]
ZHENG Z Y. The applied study of T1 relaxation time in the rotating frame imaging and perfusion weighted imaging in glioma grading[D].Guangzhou: Southern Medical University, 2016.
[54]
BENDER B, HERZ K, DESHMANE A, et al. GLINT: GlucoCEST in neoplastic tumors at 3T-clinical results of GlucoCEST in gliomas[J]. MAGMA, 2022, 35(1): 77-85. DOI: 10.1007/s10334-021-00982-5.

PREV Research Progress of ultra-high-field magnetic resonance imaging in musculoskeletal system
NEXT Expert consensus on whole-body magnetic resonance imaging in multiple myeloma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn