Share:
Share this content in WeChat
X
Special Focu
Clinical application status and development prospects for PET/MR
XU Chen  SUN Hongzan 

Cite this article as: XU C, SUN H Z. Clinical application status and development prospects for PET/MR[J]. Chin J Magn Reson Imaging, 2024, 15(7): 7-14, 26. DOI:10.12015/issn.1674-8034.2024.07.002.


[Abstract] The integrated positron emission tomography/magnetic resonance (PET/MR) imaging system merges the high precision and quantitative data of PET imaging with the superior soft tissue resolution and multifunctional sequence imaging of MR, making it widely applicable in diagnosing and treating malignancies, cardiovascular diseases, and neurological disorders. Therefore, affirming the clinical value of integrated PET/MR imaging, exploring its clinical indications, defining its role in clinical practice, and identifying the optimal development environment is crucial. This review discusses the application and current research status of PET/MR imaging in related diseases, highlighting the advantages and limitations of PET/MR compared to Prognosis; positron emission tomography/computed tomography (PET/CT) in disease diagnosis, progression assessment, and prognosis prediction. Furthermore, it forecasts the future clinical application trends of the integrated PET/MR imaging system. In summary, this review aims to provide empirical evidence for clinicians and radiologists on the clinical application of PET/MR imaging to unlock its potential in clinical practice.
[Keywords] alignant tumors;cardiovascular diseases;nervous system diseases;diagnosis;stage;efficacy evaluation;prognosis;positron emission tomography/computed tomography (PET/CT);positron emission tomography/magnetic resonance (PET/MR);magnetic resonance imaging

XU Chen   SUN Hongzan*  

Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

Corresponding author: SUN H Z, E-mail: sunhongzan@126.com

Conflicts of interest   None.

Received  2024-03-06
Accepted  2024-06-25
DOI: 10.12015/issn.1674-8034.2024.07.002
Cite this article as: XU C, SUN H Z. Clinical application status and development prospects for PET/MR[J]. Chin J Magn Reson Imaging, 2024, 15(7): 7-14, 26. DOI:10.12015/issn.1674-8034.2024.07.002.

[1]
MORADI F, IAGARU A, MCCONATHY J. Clinical applications of PET/MR imaging[J]. Radiol Clin North Am, 2021, 59(5): 853-874. DOI: 10.1016/j.rcl.2021.05.013.
[2]
BOGDANOVIC B, SOLARI E L, VILLAGRAN ASIARES A, et al. PET/MR technology: advancement and challenges[J]. Semin Nucl Med, 2022, 52(3): 340-355. DOI: 10.1053/j.semnuclmed.2021.11.014.
[3]
ROWE S P, POMPER M G. Molecular imaging in oncology: current impact and future directions[J]. CA Cancer J Clin, 2022, 72(4): 333-352. DOI: 10.3322/caac.21713.
[4]
YANG Z L, ZHANG L J. PET/MRI of central nervous system: current status and future perspective[J]. Eur Radiol, 2016, 26(10): 3534-3541. DOI: 10.1007/s00330-015-4202-5.
[5]
ROBSON P M, DEY D, NEWBY D E, et al. MR/PET imaging of the cardiovascular system[J]. JACC Cardiovasc Imaging, 2017, 10(10Pt A): 1165-1179. DOI: 10.1016/j.jcmg.2017.07.008.
[6]
XU B X, TIAN J H. Application and progress of PET/MR in clinic[J]. Chin J Nucl Med Mol Imag, 2021, 41(7): 385-387. DOI: 10.3760/cma.j.cn321828-20210525-00175.
[7]
SCHWENCK J, SONANINI D, COTTON J M, et al. Advances in PET imaging of cancer[J]. Nat Rev Cancer, 2023, 23(7): 474-490. DOI: 10.1038/s41568-023-00576-4.
[8]
KO C C, YEH L R, KUO Y T, et al. Imaging biomarkers for evaluating tumor response: RECIST and beyond[J/OL]. Biomark Res, 2021, 9(1): 52 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/34215324/. DOI: 10.1186/s40364-021-00306-8.
[9]
RASLAN O, OZTURK A, OGUZ K K, et al. Imaging cancer in neuroradiology[J/OL]. Curr Probl Cancer, 2023, 47(2): 100965 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/37349190/. DOI: 10.1016/j.currproblcancer.2023.100965.
[10]
BRENDLE C, MAIER C, BENDER B, et al. Impact of 18F-FET PET/MRI on clinical management of brain tumor patients[J]. J Nucl Med, 2022, 63(4): 522-527. DOI: 10.2967/jnumed.121.262051.
[11]
HOFFMAN R M. L-[methyl-11C]methionine-positron-emission tomography (MET-PET)[J/OL]. Methods Mol Biol, 2019, 1866: 267-271 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/30725422/. DOI: 10.1007/978-1-4939-8796-2_20.
[12]
FORTUNATI E, ARGALIA G, ZANONI L, et al. New PET radiotracers for the imaging of neuroendocrine neoplasms[J]. Curr Treat Options Oncol, 2022, 23(5): 703-720. DOI: 10.1007/s11864-022-00967-z.
[13]
RUIZ DE GARIBAY G, GARCÍA DE JALÓN E, STIGEN E, et al. Repurposing 18F-FMISO as a PET tracer for translational imaging of nitroreductase-based gene directed enzyme prodrug therapy[J]. Theranostics, 2021, 11(12): 6044-6057. DOI: 10.7150/thno.55092.
[14]
HLADKY S B, BARRAND M A. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier[J/OL]. Fluids Barriers CNS, 2018, 15(1): 30 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/30340614/. DOI: 10.1186/s12987-018-0113-6.
[15]
GAUVAIN K, PONISIO M R, BARONE A, et al. 18F-FDOPA PET/MRI for monitoring early response to bevacizumab in children with recurrent brain tumors[J]. Neurooncol Pract, 2018, 5(1): 28-36. DOI: 10.1093/nop/npx008.
[16]
GALLDIKS N, NIYAZI M, GROSU A L, et al. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group[J]. Neuro Oncol, 2021, 23(6): 881-893. DOI: 10.1093/neuonc/noab013.
[17]
HIRATA K, YAMAGUCHI S, SHIGA T, et al. The roles of hypoxia imaging using 18F-fluoromisonidazole positron emission tomography in glioma treatment[J/OL]. J Clin Med, 2019, 8(8): 1088 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/31344848/. DOI: 10.3390/jcm8081088.
[18]
DUNET V, POMONI A, HOTTINGER A, et al. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis[J]. Neuro-oncology, 2016, 18(3): 426-434. DOI: 10.1093/neuonc/nov148.
[19]
DEUSCHL C, MOENNINGHOFF C, GOERICKE S, et al. Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study[J]. Eur J Nucl Med Mol Imaging, 2017, 44(8): 1285-1295. DOI: 10.1007/s00259-017-3661-0.
[20]
FLYGARE L, ERDOGAN S T, SÖDERKVIST K. PET/MR versus PET/CT for locoregional staging of oropharyngeal squamous cell cancer[J]. Acta Radiol, 2023, 64(5): 1865-1872. DOI: 10.1177/02841851221140668.
[21]
VALDEC S, BOSSHARD F A, HÜLLNER M, et al. Value of FDG-PET/MR in oral focus assessment in head and neck cancer patients-a feasibility study[J/OL]. Front Med, 2022, 9: 809323 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/35386916/. DOI: 10.3389/fmed.2022.809323.
[22]
SAMOLYK-KOGACZEWSKA N, SIERKO E, DZIEMIANCZYK- PAKIELA D, et al. Usefulness of hybrid PET/MRI in clinical evaluation of head and neck cancer patients[J/OL]. Cancers, 2020, 12(2): 511 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/32098356/. DOI: 10.3390/cancers12020511.
[23]
OHLIGER M A, HOPE T A, CHAPMAN J S, et al. PET/MR imaging in gynecologic oncology[J]. Magn Reson Imaging Clin N Am, 2017, 25(3): 667-684. DOI: 10.1016/j.mric.2017.03.012.
[24]
XU C, DU S Y, ZHANG S Y, et al. Value of integrated PET-IVIM MR in assessing metastases in hypermetabolic pelvic lymph nodes in cervical cancer: a multi-parameter study[J]. Eur Radiol, 2020, 30(5): 2483-2492. DOI: 10.1007/s00330-019-06611-z.
[25]
STEINER A, NARVA S, RINTA-KIIKKA I, et al. Diagnostic efficiency of whole-body 18F-FDG PET/MRI, MRI alone, and SUV and ADC values in staging of primary uterine cervical cancer[J/OL]. Cancer Imaging, 2021, 21(1): 16 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/33482909/. DOI: 10.1186/s40644-020-00372-5.
[26]
RAHMAN W T, WALE D J, VIGLIANTI B L, et al. The impact of infection and inflammation in oncologic 18F-FDG PET/CT imaging[J/OL]. Biomedecine Pharmacother, 2019, 117: 109168 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/31334700/. DOI: 10.1016/j.biopha.2019.109168.
[27]
GAO S, DU S Y, LU Z M, et al. Multiparametric PET/MR (PET and MR-IVIM) for the evaluation of early treatment response and prediction of tumor recurrence in patients with locally advanced cervical cancer[J]. Eur Radiol, 2020, 30(2): 1191-1201. DOI: 10.1007/s00330-019-06428-w.
[28]
XU C, SUN H Z, DU S Y, et al. Early treatment response of patients undergoing concurrent chemoradiotherapy for cervical cancer: an evaluation of integrated multi-parameter PET-IVIM MR[J/OL]. Eur J Radiol, 2019, 117: 1-8 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/31307633/. DOI: 10.1016/j.ejrad.2019.05.012.
[29]
NIE J, ZHANG J, GAO J S, et al. Diagnostic role of 18F-FDG PET/MRI in patients with gynecological malignancies of the pelvis: a systematic review and meta-analysis[J/OL]. PLoS One, 2017, 12(5): e0175401 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/28481958/. DOI: 10.1371/journal.pone.0175401.
[30]
MCGETTIGAN M, ZULFIQAR M, SHETTY A S. Imaging of vaginal and vulvar malignancy[J]. Radiol Clin North Am, 2023, 61(4): 651-670. DOI: 10.1016/j.rcl.2023.02.010.
[31]
VIRARKAR M, GANESHAN D, GULATI A T, et al. Diagnostic performance of PET/CT and PET/MR in the management of ovarian carcinoma-aliterature review[J]. Abdom Radiol, 2021, 46(6): 2323-2349. DOI: 10.1007/s00261-020-02847-2.
[32]
JÓNSDÓTTIR B, MARCICKIEWICZ J, BORGFELDT C, et al. Preoperative and intraoperative assessment of myometrial invasion in endometrial cancer-a Swedish Gynecologic Cancer Group (SweGCG) study[J]. Acta Obstet Gynecol Scand, 2021, 100(8): 1526-1533. DOI: 10.1111/aogs.14146.
[33]
SHREVE P D, ANZAI Y, WAHL R L. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants[J]. Radiographics, 1999, 19(1): 61-77. DOI: 10.1148/radiographics.19.1.g99ja0761.
[34]
KUNZ G, LEYENDECKER G. Uterine peristaltic activity during the menstrual cycle: characterization, regulation, function and dysfunction[J]. Reprod Biomed Online, 2002, 4(Suppl 3): 5-9. DOI: 10.1016/s1472-6483(12)60108-4.
[35]
NISHIZAWA S, INUBUSHI M, OKADA H. Physiological 18F-FDG uptake in the ovaries and uterus of healthy female volunteers[J]. Eur J Nucl Med Mol Imaging, 2005, 32(5): 549-556. DOI: 10.1007/s00259-004-1703-x.
[36]
MENA E, BLACK P C, RAIS-BAHRAMI S, et al. Novel PET imaging methods for prostate cancer[J]. World J Urol, 2021, 39(3): 687-699. DOI: 10.1007/s00345-020-03344-3.
[37]
DARYANANI A, TURKBEY B. Recent advancements in CT and MR imaging of prostate cancer[J]. Semin Nucl Med, 2022, 52(3): 365-373. DOI: 10.1053/j.semnuclmed.2021.11.013.
[38]
MANSBRIDGE M, CHUNG E, RHEE H. The use of MRI and PET imaging studies for prostate cancer management: brief update, clinical recommendations, and technological limitations[J/OL]. Med Sci, 2019, 7(8): 85 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/31387208/. DOI: 10.3390/medsci7080085.
[39]
FAROLFI A, CALDERONI L, MATTANA F, et al. Current and emerging clinical applications of PSMA PET diagnostic imaging for prostate cancer[J]. J Nucl Med, 2021, 62(5): 596-604. DOI: 10.2967/jnumed.120.257238.
[40]
EVANGELISTA L, ZATTONI F, CASSARINO G, et al. PET/MRI in prostate cancer: a systematic review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2021, 48(3): 859-873. DOI: 10.1007/s00259-020-05025-0.
[41]
KANE C J, AMLING C L, JOHNSTONE P A, et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy[J]. Urology, 2003, 61(3): 607-611. DOI: 10.1016/s0090-4295(02)02411-1.
[42]
CARRIE C, HASBINI A, LAROCHE G D, et al. Salvage radiotherapy with or without short-term hormone therapy for rising prostate-specific antigen concentration after radical prostatectomy (GETUG-AFU 16): a randomised, multicentre, open-label phase 3 trial[J]. Lancet Oncol, 2016, 17(6): 747-756. DOI: 10.1016/S1470-2045(16)00111-X.
[43]
STEPHENSON A J, SHARIAT S F, ZELEFSKY M J, et al. Salvage radiotherapy for recurrent prostate cancer after radical prostatectomy[J]. JAMA, 2004, 291(11): 1325-1332. DOI: 10.1001/jama.291.11.1325.
[44]
AFSHAR-OROMIEH A, ZECHMANN C M, MALCHER A, et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2014, 41(1): 11-20. DOI: 10.1007/s00259-013-2525-5.
[45]
RICE S L, FRIEDMAN K P. Clinical PET-MR imaging in breast cancer and lung cancer[J]. PET Clin, 2016, 11(4): 387-402. DOI: 10.1016/j.cpet.2016.05.008.
[46]
FOWLER A M, STRIGEL R M. Clinical advances in PET-MRI for breast cancer[J/OL]. Lancet Oncol, 2022, 23(1): e32-e43 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/34973230/. DOI: 10.1016/S1470-2045(21)00577-5.
[47]
BRUCKMANN N M, MORAWITZ J, FENDLER W P, et al. A role of PET/MR in breast cancer?[J]. Semin Nucl Med, 2022, 52(5): 611-618. DOI: 10.1053/j.semnuclmed.2022.01.003.
[48]
SOTOUDEH H, SHARMA A, FOWLER K J, et al. Clinical application of PET/MRI in oncology[J]. J Magn Reson Imaging, 2016, 44(2): 265-276. DOI: 10.1002/jmri.25161.
[49]
FRAUM T J, LUDWIG D R, HOPE T A, et al. PET/MRI for gastrointestinal imaging: current clinical status and future prospects[J]. Gastroenterol Clin North Am, 2018, 47(3): 691-714. DOI: 10.1016/j.gtc.2018.04.011.
[50]
MIRSHAHVALAD S A, HINZPETER R, KOHAN A, et al. Diagnostic performance of [18F]-FDG PET/MR in evaluating colorectal cancer: a systematic review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2022, 49(12): 4205-4217. DOI: 10.1007/s00259-022-05871-0.
[51]
ÇELEBI F, YAGHOUTI K, CINDIL E, et al. The role of 18F-FDG PET/MRI in the assessment of primary intrahepatic neoplasms[J]. Acad Radiol, 2021, 28(2): 189-198. DOI: 10.1016/j.acra.2020.01.026.
[52]
GUNIGANTI P, KIERANS A S. PET/MRI of the hepatobiliary system: review of techniques and applications[J/OL]. Clin Imaging, 2021, 71: 160-169 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/33285404/. DOI: 10.1016/j.clinimag.2020.10.056.
[53]
JOO I, LEE J M, LEE D H, et al. Preoperative assessment of pancreatic cancer with FDG PET/MR imaging versus FDG PET/CT plus contrast-enhanced multidetector ct: a prospective preliminary study[J]. Radiology, 2017, 282(1): 149-159. DOI: 10.1148/radiol.2016152798.
[54]
LI X D, LIN X Z. The application of PET/MRI in pancreatic neoplasms[J]. Int J Med Radiol, 2018, 41(1): 59-61, 84. DOI: 10.19300/j.2018.Z5124.
[55]
SCHMIDKONZ C, ELLMANN S, RITT P, et al. Hybrid imaging (PET-computed tomography/PET-MR imaging) of bone metastases[J]. PET Clin, 2019, 14(1): 121-133. DOI: 10.1016/j.cpet.2018.08.003.
[56]
MANHAS N S, SALEHI S, JOYCE P, et al. PET/computed tomography scans and PET/MR imaging in the diagnosis and management of musculoskeletal diseases[J]. PET Clin, 2020, 15(4): 535-545. DOI: 10.1016/j.cpet.2020.06.005.
[57]
ANDERSEN K F, JENSEN K E, LOFT A. PET/MR imaging in musculoskeletal disorders[J]. PET Clin, 2016, 11(4): 453-463. DOI: 10.1016/j.cpet.2016.05.007.
[58]
NAZIR M S, ISMAIL T F, REYES E, et al. Hybrid positron emission tomography-magnetic resonance of the heart: current state of the art and future applications[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(9): 962-974. DOI: 10.1093/ehjci/jey090.
[59]
BERGQUIST P J, CHUNG M S, JONES A, et al. Cardiac applications of PET-MR[J/OL]. Curr Cardiol Rep, 2017, 19(5): 42 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/28401505/. DOI: 10.1007/s11886-017-0847-9.
[60]
CHEN W G, JEUDY J. Assessment of myocarditis: cardiac MR, PET/CT, or PET/MR?[J/OL]. Curr Cardiol Rep, 2019, 21(8): 76 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/31243587/. DOI: 10.1007/s11886-019-1158-0.
[61]
KONG E J, LEE S H, CHO I H. Myocardial fibrosis in hypertrophic cardiomyopathy demonstrated by integrated cardiac F-18 FDG PET/MR[J]. Nucl Med Mol Imaging, 2013, 47(3): 196-200. DOI: 10.1007/s13139-013-0201-0.
[62]
MCKENNEY-DRAKE M L, MOGHBEL M C, PAYDARY K, et al. 18F-NaF and 18F-FDG as molecular probes in the evaluation of atherosclerosis[J]. Eur J Nucl Med Mol Imaging, 2018, 45(12): 2190-2200. DOI: 10.1007/s00259-018-4078-0.
[63]
SENDERS M L, CALCAGNO C, TAWAKOL A, et al. PET/MR imaging of inflammation in atherosclerosis[J]. Nat Biomed Eng, 2023, 7(3): 202-220. DOI: 10.1038/s41551-022-00970-7.
[64]
BARRIO P, LÓPEZ-MELGAR B, FIDALGO A, et al. Additional value of hybrid PET/MR imaging versus MR or PET performed separately to assess cardiovascular disease[J]. Rev Esp Cardiol, 2021, 74(4): 303-311. DOI: 10.1016/j.rec.2020.06.034.
[65]
CARDOSO R, LEUCKER T M. Applications of PET-MR imaging in cardiovascular disorders[J]. PET Clin, 2020, 15(4): 509-520. DOI: 10.1016/j.cpet.2020.06.007.
[66]
GUO K, WANG J J, CUI B X, et al. Correction to: [18F]FDG PET/MRI and magnetoencephalography may improve presurgical localization of temporal lobe epilepsy[J/OL]. Eur Radiol, 2022, 32(5): 3611 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/35312792/. DOI: 10.1007/s00330-022-08546-4.
[67]
FLAUS A, MELLERIO C, RODRIGO S, et al. 18F-FDG PET/MR in focal epilepsy: a new step for improving the detection of epileptogenic lesions[J/OL]. Epilepsy Res, 2021, 178: 106819 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/34847426/. DOI: 10.1016/j.eplepsyres.2021.106819.
[68]
BORJA A J, HANCIN E C, KHOSRAVI M, et al. Applications of hybrid PET/magnetic resonance imaging in central nervous system disorders[J]. PET Clin, 2020, 15(4): 497-508. DOI: 10.1016/j.cpet.2020.06.004.
[69]
ZHANG X Y, YANG Z L, LU G M, et al. PET/MR imaging: new frontier in Alzheimer's disease and other dementias[J/OL]. Front Mol Neurosci, 2017, 10: 343 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/29163024/. DOI: 10.3389/fnmol.2017.00343.
[70]
HENRIKSEN O M, MARNER L, LAW I. Clinical PET/MR imaging in dementia and neuro-oncology[J]. PET Clin, 2016, 11(4): 441-452. DOI: 10.1016/j.cpet.2016.05.003.

PREV Expert consensus on whole-body magnetic resonance imaging in multiple myeloma
NEXT Preliminary study for 18F-FDG PET/MR findings of autoimmune encephalitis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn