Share:
Share this content in WeChat
X
Special Focu
Preliminary study for 18F-FDG PET/MR findings of autoimmune encephalitis
WANG Yue  BAI Shuwei  ZHANG Yan  HUANG Gan  ZHANG Chenpeng  HAO Yong  LIU Jianjun  SHAO Hongda 

Cite this article as: WANG Y, BAI S W, ZHANG Y, et al. Preliminary study for 18F-FDG PET/MR findings of autoimmune encephalitis[J]. Chin J Magn Reson Imaging, 2024, 15(7): 15-20. DOI:10.12015/issn.1674-8034.2024.07.003.


[Abstract] Objective To investigate the image findings of autoimmune encephalitis (AE) based on 18F-fludeoxyglucose positron emission tomography/magnetic resonance (18F-FDG PET/MR) images and explore imaging markers that can improve the diagnostic efficacy of AE.Materials and Methods Twenty-five patients with AE (AE group) and 11 healthy controls (HC) group were included in this study. All subjects were undergoing head 18F-FDG PET/MR scan. The areas of brain abnormal FDG uptake in AE group were obtained using statistical parametric mapping 12 (SPM12) processing package. The volume/total intracranial volume (volume/TIV) and average standardized uptake value ratio (SUVr) of brain areas were extracted using multimodal brain analysis software, and statistical analysis was performed to obtain the differences between the AE group and the HC group. Brain regions with significant differences in volume/TIV and SUVr were selected respectively to make receiver operating characteristic (ROC) curves, and the diagnostic efficiency of single parameters and their pairwise combinations were calculated. DeLong test was performed predict the best model. Calibration curve and decision curve were drawn to evaluate the accuracy of the prediction model. Permutation testing was employed to evaluate the statistical significance.Results Analysis using SPM12 showed the abnormal FDG uptake areas in AE group increased in brain stem and cerebellum (P<0.001), and decreased in bilateral frontal, parietal and right occipital lobes (P<0.001). The results of brain structural analysis showed that the volume/TIV of insula, cingulate gyrus and talar gyrus decreased (P<0.05), SUVr decreased in the middle cingulate gyrus, parietal lobe, cuneus and lateral occipital gyrus (P<0.05). The volume/TIV of the left talar gyrus and the SUVr of the left middle cingulate gyrus were the two parameters with the most significant differences between the two groups. The ROC curve found that the combination of the volume/TIV of the left talar gyrus and the SUVr of the left middle cingulate gyrus had the highest diagnostic efficiency (area under the curve=0.964). DeLong test showed that there was a significant difference between the diagnostic efficacy of any two quantitative parameters combined with any single parameter (P<0.05). The calibration curve showed that the calibration of the diagnostic model was general, but the decision curve showed that patients could obtain relatively high net benefits within a certain risk threshold. Permutation test showed that there were significant differences in volume/TIV of the left calcarine gyrus and SUVr of the left middle cingulate gyrus between AE group and HC group.Conclusions Multiple brain regions with FDG metabolism abnormalities and brain volume changes are found in 18F-FDG PET/MR of AE patients. The combination of the volume/TIV of the left talar gyrus and the SUVr of the left middle cingulate gyrus is a potential biomarker of diagnosing AE.
[Keywords] encephalitis;autoimmune encephalitis;imaging findings;positron emission tomography;magnetic resonance imaging

WANG Yue1   BAI Shuwei2   ZHANG Yan1   HUANG Gan1   ZHANG Chenpeng1   HAO Yong3   LIU Jianjun1*   SHAO Hongda1  

1 Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China

2 Shanghai Clinical Research and Trial Center, Shanghai 200122, China

3 Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China

Corresponding author: LIU J J, E-mail: nuclearj@163.com

Conflicts of interest   None.

Received  2024-01-22
Accepted  2024-05-13
DOI: 10.12015/issn.1674-8034.2024.07.003
Cite this article as: WANG Y, BAI S W, ZHANG Y, et al. Preliminary study for 18F-FDG PET/MR findings of autoimmune encephalitis[J]. Chin J Magn Reson Imaging, 2024, 15(7): 15-20. DOI:10.12015/issn.1674-8034.2024.07.003.

[1]
LEYPOLDT F, ARMANGUE T, DALMAU J. Autoimmune encephalopathies[J]. Ann N Y Acad Sci, 2015, 1338(1): 94-114. DOI: 10.1111/nyas.12553.
[2]
ABBOUD H, PROBASCO J C, IRANI S, et al. Autoimmune encephalitis: proposed best practice recommendations for diagnosis and acute management[J]. J Neurol Neurosurg Psychiatry, 2021, 92(7): 757-768. DOI: 10.1136/jnnp-2020-325300.
[3]
DALMAU J, GRAUS F. Antibody-mediated encephalitis[J]. N Engl J Med, 2018, 378(9): 840-851. DOI: 10.1056/NEJMra1708712.
[4]
Chinese Society of Neuroinfectious Diseases and Cerebrospinal Fluid Cytology. Chinese expert consensus on the diagnosis and management of autoimmune encephalitis (2022 edition)[J]. Chin J Neurol, 2022, 55(9): 931-949. DOI: 10.3760/cma.j.cn113694-20220219-00118.
[5]
Neurology Branch of Chinese Medical Association. Expert consensus on diagnosis and treatment of autoimmune encephalitis in China[J]. Chin J Neurol, 2017, 50(2): 91-98. DOI: 10.3760/cma.j.issn.1006-7876.2017.02.004.
[6]
GRAUS F, VOGRIG A, MUÑIZ-CASTRILLO S, et al. Updated diagnostic criteria for paraneoplastic neurologic syndromes[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2021, 8(4): e1014 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/34006622/. DOI: 10.1212/NXI.0000000000001014.
[7]
LI C Y, ZHANG X M, WANG S Y, et al. Research progress on related risk factors, prevention and treatment of headache after lumbar puncture[J]. Stroke Nerv Dis, 2023, 30(6): 638-642. DOI: 10.3969/j.issn.1007-0478.2023.06.021.
[8]
DI Y Q, ZHANG Q. The progress of MRI research on autoimmune encephalitis[J]. Int J Med Radiol, 2021, 44(5): 570-573. DOI: 10.19300/j.2021.z18811.
[9]
LIU L, SONG Z H, GUO J, et al. Clinical analysis of 45 Chinese patients with anti-N-methyl-D-aspartate receptor encephalitis[J]. Chin J Neurol, 2014, 47(7): 474-481. DOI: 10.3760/cma.j.issn.1006-7876.2014.07.009.
[10]
TITULAER M J, HÖFTBERGER R, IIZUKA T, et al. Overlapping demyelinating syndromes and anti-N-methyl-D-aspartate receptor encephalitis[J]. Ann Neurol, 2014, 75(3): 411-428. DOI: 10.1002/ana.24117.
[11]
BACCHI S, FRANKE K, WEWEGAMA D, et al. Magnetic resonance imaging and positron emission tomography in anti-NMDA receptor encephalitis: a systematic review[J/OL]. J Clin Neurosci, 2018, 52: 54-59 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/29605275/. DOI: 10.1016/j.jocn.2018.03.026.
[12]
SADAGHIANI M S, ROMAN S, DIAZ-ARIAS L A, et al. Comparison of quantitative FDG-PET and MRI in anti-LGI1 autoimmune encephalitis[J]. Neuroradiology, 2023, 65(8): 1225-1238. DOI: 10.1007/s00234-023-03165-2.
[13]
BORDONNE M, CHAWKI M B, DOYEN M, et al. Brain 18F-FDG PET for the diagnosis of autoimmune encephalitis: a systematic review and a meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2021, 48(12): 3847-3858. DOI: 10.1007/s00259-021-05299-y.
[14]
LI Y M. Integrated whole body PET/MRI: a new modality of modern medical imaging[J]. Chin J Med Imag Technol, 2021, 37(11): 1601-1603. DOI: 10.13929/j.issn.1003-3289.2021.11.001.
[15]
GAO W W, DU L, MA G L. Study progress in magnetic resonance imaging and analysis methods in hemifacial spasm[J]. Chin J Magn Reson Imag, 2019, 10(1): 64-67. DOI: 10.12015/issn.1674-8034.2019.01.012.
[16]
LAMAYE C, BASTIN C, BERNARD C, et al. Comparative analysis of the brain distribution of [18F]FDG in populations of patients with Alzheimer's disease with or without family history of dementia[J]. Rev Med Liege, 2022, 77(4): 224-230.
[17]
VAN LAERE K, CECCARINI J, GEBRUERS J, et al. Simultaneous 18F-FDG PET/MR metabolic and structural changes in visual snow syndrome and diagnostic use[J/OL]. EJNMMI Res, 2022, 12(1): 77 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/36583806/. DOI: 10.1186/s13550-022-00949-0.
[18]
LI X Y, TIAN Y T, WANG X N, et al. Cerebral perfusion in Parkinson's disease with depression: an arterial spin labeling MRI study[J]. Chin J Magn Reson Imag, 2023, 14(1): 6-12. DOI: 10.12015/issn.1674-8034.2023.01.002.
[19]
SHAN Y, YAN S Z, WANG Z, et al. Impact of brain segmentation methods on regional metabolism quantification in 18F-FDG PET/MR analysis[J/OL]. EJNMMI Res, 2023, 13(1): 79 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/37668814/. DOI: 10.1186/s13550-023-01028-8.
[20]
HONG Y, FU C, XING Y Z, et al. Delayed 18F-FDG PET imaging provides better metabolic asymmetry in potential epileptogenic zone in temporal lobe epilepsy[J/OL]. Front Med, 2023, 10: 1180541 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/37465642/. DOI: 10.3389/fmed.2023.1180541.
[21]
ARNONE A, ALLOCCA M, DATO R D, et al. FDG PET in the differential diagnosis of degenerative parkinsonian disorders: usefulness of voxel-based analysis in clinical practice[J]. Neurol Sci, 2022, 43(9): 5333-5341. DOI: 10.1007/s10072-022-06166-w.
[22]
ALONGI P, SARDINA D S, COPPOLA R, et al. 18F-Florbetaben PET/CT to Assess Alzheimer's Disease: a new Analysis Method for Regional Amyloid Quantification[J]. J Neuroimaging, 2019, 29(3): 383-393. DOI: 10.1111/jon.12601.
[23]
ZHANG C P, HAO Y, HUANG G, et al. Hypometabolism of the left middle/medial frontal lobe on FDG-PET in anti-NMDA receptor encephalitis: comparison with MRI and EEG findings[J]. CNS Neurosci Ther, 2023, 29(6): 1624-1635. DOI: 10.1111/cns.14125.
[24]
MORENO-AJONA D, PRIETO E, GRISANTI F, et al. 18F-FDG-PET imaging patterns in autoimmune encephalitis: impact of image analysis on the results[J/OL]. Diagnostics, 2020, 10(6): 356 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/32486044/. DOI: 10.3390/diagnostics10060356.
[25]
CHEN Y, XING X W, ZHANG J T, et al. Autoimmune encephalitis mimicking sporadic Creutzfeldt-Jakob disease: a retrospective study[J/OL]. J Neuroimmunol, 2016, 295/296: 1-8 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/27235341/. DOI: 10.1016/j.jneuroim.2016.03.012.
[26]
PROBASCO J C, SOLNES L, NALLURI A, et al. Decreased occipital lobe metabolism by FDG-PET/CT: an anti-NMDA receptor encephalitis biomarker[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2018, 5(1): e413 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/29159205/. DOI: 10.1212/NXI.0000000000000413.
[27]
LIU X, YU T T, ZHAO X B, et al. 18 F-fluorodeoxy-glucose positron emission tomography pattern and prognostic predictors in patients with anti-GABAB receptor encephalitis[J]. CNS Neurosci Ther, 2022, 28(2): 269-278. DOI: 10.1111/cns.13767.
[28]
BRESSLER S L, MENON V. Large-scale brain networks in cognition: emerging methods and principles[J]. Trends Cogn Sci, 2010, 14(6): 277-290. DOI: 10.1016/j.tics.2010.04.004.
[29]
HARMS A, BAUER T, WITT J A, et al. Mesiotemporal volumetry, cortical thickness, and neuropsychological deficits in the long-term course of limbic encephalitis[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2023, 10(4): e200125 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/37230543/. DOI: 10.1212/NXI.0000000000200125.
[30]
SUN Y Q, TAO J X, HAN X, et al. Clinical features and brain MRI volumetric changes in anti-mGluR5 encephalitis[J]. Ann Clin Transl Neurol, 2023, 10(8): 1407-1416. DOI: 10.1002/acn3.51831.
[31]
XIANG Y Y. MRI features of autoimmune encephalitis and cortical morphological changes in anti-N-methyl-D-aspartate receptor encephalitis and their correlation with clinical scores[D].Chongqing: Chongqing Medical University, 2019.
[32]
LI H H, GUGLIELMETTI C, SEI Y J, et al. Neurons require glucose uptake and glycolysis in vivo[J/OL]. Cell Rep, 2023, 42(4): 112335 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/37027294/. DOI: 10.1016/j.celrep.2023.112335.
[33]
WANG J G, GE J J, JIN L, et al. Characterization of neuroinflammation pattern in anti-LGI1 encephalitis based on TSPO PET and symptom clustering analysis[J]. Eur J Nucl Med Mol Imaging, 2023, 50(8): 2394-2408. DOI: 10.1007/s00259-023-06190-8.
[34]
WANG J G, JIN L, ZHANG X, et al. Activated microglia by 18F-DPA714 PET in a case of anti-LGI1 autoimmune encephalitis[J/OL]. J Neuroimmunol, 2022, 368: 577879 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/35504188/. DOI: 10.1016/j.jneuroim.2022.577879.
[35]
BETLAZAR C, MIDDLETON R J, BANATI R, et al. The translocator protein (TSPO) in mitochondrial bioenergetics and immune processes[J/OL]. Cells, 2020, 9(2): 512 [2024-01-21]. https://pubmed.ncbi.nlm.nih.gov/32102369/. DOI: 10.3390/cells9020512.

PREV Clinical application status and development prospects for PET/MR
NEXT Preoperative assessment of MGMT gene promoter methylation status in adult high-grade glioma patients by integrated 18F-FET PET/MR
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn