Share:
Share this content in WeChat
X
Special Focu
Preoperative assessment of MGMT gene promoter methylation status in adult high-grade glioma patients by integrated 18F-FET PET/MR
HAN Qingqing  LI Tuo  LIN Zengping  LI Enhui  YANG Yang  LIU Jiahui  XING Hao  WANG Yu  CHENG Xin  HUO Li 

Cite this article as: HAN Q Q, LI T, LIN Z P, et al. Preoperative assessment of MGMT gene promoter methylation status in adult high-grade glioma patients by integrated 18F-FET PET/MR[J]. Chin J Magn Reson Imaging, 2024, 15(7): 21-26. DOI:10.12015/issn.1674-8034.2024.07.004.


[Abstract] Objective To investigate the discriminative ability of integrated 18F-fluoroethyltyrosine (18F-FET) positron emission tomography (PET)/MR for O6-methylguanine DNA methyltransferase (MGMT) gene promoter methylation status in adult gliomas.Materials and Methods A total of 16 patients with unbiopsied or untreated gliomas were retrospectively enrolled to complete integrated PET/MR scans, including 18F-FET PET, conventional MRI and intravoxel incoherent motion (IVIM) imaging. The volume of interest (VOI) segmentation of PET images was performed using target-background ratio (TBR)=1.6 as a threshold, and IVIM maps corresponding to tumor VOI and their parameters, apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo diffusion coefficient (D*), perfusion fraction (f), distributed diffusion coefficient (DDC), and heterogeneity index (α), were obtained by rigid alignment, and the corresponding first-order gray-scale histogram features were obtained by feature extraction of each parameter using pyradiomics. The eigenvalues corresponding to each IVIM parameter map were calculated in relation to the 18F-FET PET parameters, and the ability of PET and IVIM parameters to discriminate MGMT promoter methylation was explored using between-group comparisons and receiver operating characteristic (ROC) curve analysis.Results The two eigenvalues 90th percentile (r=0.526, P<0.05) and maximum (r=0.520, P<0.05) of IVIM-α were positively correlated with mean standard uptake value (SUVmean) of PET parameter; The differences between IVIM-α and SUVmean in the two groups of positive and negative MGMT promoter methylation status were statistically significant (P<0.05), and the positive group had significantly higher mean IVIM-α and SUVmean than the negative group. The area under the curve (AUC) of discrimination of the methylation status of the MGMT promoter by incorporating the mean IVIM-α value and SUVmean was 0.77.Conclusions 18F-FET PET and IVIM parameters based on integrated PET/MR can effectively predict MGMT promoter methylation status in gliomas.
[Keywords] glioma;O6-methylguanine DNA methyltransferase gene;18F-Fluoroethyltyrosine positron emission tomography (18F-FET PET);positron emission tomography/magnetic resonance (PET/MR);intravoxel incoherent motion;magnetic resonance imaging

HAN Qingqing1   LI Tuo1   LIN Zengping2   LI Enhui3   YANG Yang3   LIU Jiahui4   XING Hao4   WANG Yu4   CHENG Xin1   HUO Li1, 5*  

1 Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China

2 Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai 201807, China

3 Beijing United Imaging Research Institute of Intelligent Imaging, Beijing 100094, China

4 Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China

5 Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China

Corresponding author: HUO L, E-mail: huoli@pumch.cn

Conflicts of interest   None.

Received  2024-02-27
Accepted  2024-07-08
DOI: 10.12015/issn.1674-8034.2024.07.004
Cite this article as: HAN Q Q, LI T, LIN Z P, et al. Preoperative assessment of MGMT gene promoter methylation status in adult high-grade glioma patients by integrated 18F-FET PET/MR[J]. Chin J Magn Reson Imaging, 2024, 15(7): 21-26. DOI:10.12015/issn.1674-8034.2024.07.004.

[1]
OSTROM Q T, GITTLEMAN H, LIAO P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011[J/OL]. Neuro Oncol, 2014, 16(Suppl 4): iv1-iv63 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/25304271/. DOI: 10.1093/neuonc/nou223.
[2]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[3]
National Health Commission Medical Administration Bureau, Chinese Anti-Cancer Association Brain glioma Professional Committee, Chinese Medical Doctor Association Brain glioma Professional Committee. Guidelines for diagnosis and treatment of glioma (2022 edition)[J]. Chin J Neurosurg, 2022, 38(8): 757-777. DOI: 10.3760/cma.j.cn112050-20220510-00239.
[4]
LANGEN K J, GALLDIKS N, HATTINGEN E, et al. Advances in neuro-oncology imaging[J]. Nat Rev Neurol, 2017, 13(5): 279-289. DOI: 10.1038/nrneurol.2017.44.
[5]
PRATHER K Y, O'NEAL C M, WESTRUP A M, et al. A systematic review of amino acid PET in assessing treatment response to temozolomide in glioma[J/OL]. Neurooncol Adv, 2022, 4(1): vdac008 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/35300149/. DOI: 10.1093/noajnl/vdac008.
[6]
OLDRINI B, VAQUERO-SIGUERO N, MU Q H, et al. MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas[J/OL]. Nat Commun, 2020, 11(1): 3883 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/32753598/. DOI: 10.1038/s41467-020-17717-0.
[7]
WU H B, DENG Z T, WANG H, et al. MGMT autoantibodies as a potential prediction of recurrence and treatment response biomarker for glioma patients[J]. Cancer Med, 2019, 8(9): 4359-4369. DOI: 10.1002/cam4.2346.
[8]
BELL E H, ZHANG P X, FISHER B J, et al. Association of MGMT promoter methylation status with survival outcomes in patients with high-risk glioma treated with radiotherapy and temozolomide: an analysis from the NRG oncology/RTOG 0424 trial[J]. JAMA Oncol, 2018, 4(10): 1405-1409. DOI: 10.1001/jamaoncol.2018.1977.
[9]
SAREEN H, MA Y F, BECKER T M, et al. Molecular biomarkers in glioblastoma: a systematic review and meta-analysis[J/OL]. Int J Mol Sci, 2022, 23(16): 8835 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/36012105/. DOI: 10.3390/ijms23168835.
[10]
GALLDIKS N, LAW I, POPE W B, et al. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy[J/OL]. Neuroimage Clin, 2017, 13: 386-394 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/28116231/. DOI: 10.1016/j.nicl.2016.12.020.
[11]
VERGER A, STOFFELS G, BAUER E K, et al. Static and dynamic 18F-FET PET for the characterization of gliomas defined by IDH and 1p/19q status[J]. Eur J Nucl Med Mol Imag, 2018, 45(3): 443-451. DOI: 10.1007/s00259-017-3846-6.
[12]
SMITH N J, DEATON T K, TERRITO W, et al. Hybrid 18F-fluoroethyltyrosine PET and MRI with perfusion to distinguish disease progression from treatment-related change in malignant brain tumors: the quest to beat the toughest cases[J]. J Nucl Med, 2023, 64(7): 1087-1092. DOI: 10.2967/jnumed.122.265149.
[13]
MÜLLER M, WINZ O, GUTSCHE R, et al. Static FET PET radiomics for the differentiation of treatment-related changes from glioma progression[J]. J Neurooncol, 2022, 159(3): 519-529. DOI: 10.1007/s11060-022-04089-2.
[14]
LOHMANN P, ELAHMADAWY M A, GUTSCHE R, et al. FET PET radiomics for differentiating pseudoprogression from early tumor progression in glioma patients post-chemoradiation[J/OL]. Cancers, 2020, 12(12): 3835 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/33353180/. DOI: 10.3390/cancers12123835.
[15]
MIHOVILOVIC M I, KERTELS O, HÄNSCHEID H, et al. O-(2-(18F)fluoroethyl)-L-tyrosine PET for the differentiation of tumour recurrence from late pseudoprogression in glioblastoma[J]. J Neurol Neurosurg Psychiatry, 2019, 90(2): 238-239. DOI: 10.1136/jnnp-2017-317155.
[16]
MARNER L, LUNDEMANN M, SEHESTED A, et al. Diagnostic accuracy and clinical impact of[18F]FET PET in childhood CNS tumors[J]. Neuro Oncol, 2021, 23(12): 2107-2116. DOI: 10.1093/neuonc/noab096.
[17]
BIHAN D L, BRETON E, LALLEMAND D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
[18]
IIMA M, BIHAN D L. Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future[J]. Radiology, 2016, 278(1): 13-32. DOI: 10.1148/radiol.2015150244.
[19]
WANG C C, DONG H B. Ki-67 labeling index and the grading of cerebral gliomas by using intravoxel incoherent motion diffusion-weighted imaging and three-dimensional arterial spin labeling magnetic resonance imaging[J]. Acta Radiol, 2020, 61(8): 1057-1063. DOI: 10.1177/0284185119891694.
[20]
PARK Y W, AHN S S, PARK C J, et al. Correction to: diffusion and perfusion MRI may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas[J/OL]. Eur Radiol, 2021, 31(3): 1782 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/32910232/. DOI: 10.1007/s00330-020-07257-y.
[21]
SHENG Y R, DANG X F, ZHANG H, et al. Correlations between intravoxel incoherent motion-derived fast diffusion and perfusion fraction parameters and VEGF- and MIB-1-positive rates in brain gliomas: an intraoperative MR-navigated, biopsy-based histopathologic study[J]. Eur Radiol, 2023, 33(8): 5236-5246. DOI: 10.1007/s00330-023-09506-2.
[22]
ZHOU J, LI H F, MA X M, et al. Intravoxel incoherent motion diffusion-weighted imaging and 3D-ASL to assess the value of ki-67 labeling index and grade in glioma[J/OL]. Scanning, 2022, 2022: 8429659 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/36105553/. DOI: 10.1155/2022/8429659.
[23]
TUNLAYADECHANONT P, PANYAPING T, CHANSAKUL T, et al. Intravoxel incoherent motion for differentiating residual/recurrent tumor from post-treatment change in patients with high-grade glioma[J]. Neuroradiol J, 2023, 36(6): 657-664. DOI: 10.1177/19714009231173108.
[24]
QIU J, ZHU M, CHEN C Y, et al. Diffusion heterogeneity and vascular perfusion in tumor and peritumoral areas for prediction of overall survival in patients with high-grade glioma[J/OL]. Magn Reson Imaging, 2023, 104: 23-28 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/37734575/. DOI: 10.1016/j.mri.2023.09.004.
[25]
LI B, XU D, ZHOU J, et al. Monitoring bevacizumab-induced tumor vascular normalization by intravoxel incoherent motion diffusion-weighted MRI[J]. J Magn Reson Imaging, 2022, 56(2): 427-439. DOI: 10.1002/jmri.28012.
[26]
ZHU L N, WU J, ZHANG H, et al. The value of intravoxel incoherent motion imaging in predicting the survival of patients with astrocytoma[J]. Acta Radiol, 2021, 62(3): 423-429. DOI: 10.1177/0284185120926907.
[27]
LAW I, ALBERT N L, ARBIZU J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0[J]. Eur J Nucl Med Mol Imaging, 2019, 46(3): 540-557. DOI: 10.1007/s00259-018-4207-9.
[28]
WICK W, ROTH P, HARTMANN C, et al. Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide[J]. Neuro Oncol, 2016, 18(11): 1529-1537. DOI: 10.1093/neuonc/now133.
[29]
VETTERMANN F, SUCHORSKA B, UNTERRAINER M, et al. Non-invasive prediction of IDH-wildtype genotype in gliomas using dynamic 18F-FET PET[J]. Eur J Nucl Med Mol Imaging, 2019, 46(12): 2581-2589. DOI: 10.1007/s00259-019-04477-3.
[30]
TATKOVIC A, MCBEAN R, PERKINS E, et al. 18F-FET PET maximum standard uptake value and WHO tumour classification grade in glioma[J]. J Med Imaging Radiat Oncol, 2022, 66(3): 332-336. DOI: 10.1111/1754-9485.13322.
[31]
HAN Y, YAN L F, WANG X B, et al. Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: a region of interest based analysis[J/OL]. BMC Cancer, 2018, 18(1): 215 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/29467012/. DOI: 10.1186/s12885-018-4114-2.
[32]
SONG S S, SHAN Y, WANG L M, et al. MGMT promoter methylation status shows no effect on [18F]FET uptake and CBF in gliomas: a stereotactic image-based histological validation study[J]. Eur Radiol, 2022, 32(8): 5577-5587. DOI: 10.1007/s00330-022-08606-9.
[33]
LU J, LI X, LI H L. Perfusion parameters derived from MRI for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas[J/OL]. Magn Reson Imaging, 2021, 83: 189-195 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/34506909/. DOI: 10.1016/j.mri.2021.09.005.
[34]
LOHMANN P, STAVRINOU P, LIPKE K, et al. FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma[J]. Eur J Nucl Med Mol Imaging, 2019, 46(3): 591-602. DOI: 10.1007/s00259-018-4188-8.
[35]
HARAT M, RAKOWSKA J, HARAT M, et al. Combining amino acid PET and MRI imaging increases accuracy to define malignant areas in adult glioma[J/OL]. Nat Commun, 2023, 14(1): 4572 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/37516762/. DOI: 10.1038/s41467-023-39731-8.

PREV Preliminary study for 18F-FDG PET/MR findings of autoimmune encephalitis
NEXT Prognostic evaluation value of 18F-FDG PET/MR metabolic and diffusion parameters in non-small cell lung cancer patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn