Share:
Share this content in WeChat
X
Special Focu
Prognostic evaluation value of 18F-FDG PET/MR metabolic and diffusion parameters in non-small cell lung cancer patients
ZHOU Yihang  JIANG Han  MENG Nan  WANG Xinhui  LIU Xue  YUAN Jianmin  YANG Yang  WANG Zhe  WANG Meiyun 

Cite this article as: ZHOU Y H, JIANG H, MENG N, et al. Prognostic evaluation value of 18F-FDG PET/MR metabolic and diffusion parameters in non-small cell lung cancer patients[J]. Chin J Magn Reson Imaging, 2024, 15(7): 27-31. DOI:10.12015/issn.1674-8034.2024.07.005.


[Abstract] Objective To investigate the value of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography magnetic resonance (PET/MR) metabolic parameters and diffusion parameters in the prognosis of patients with non-small cell lung cancer (NSCLC).Materials and Methods Prospective 3.0 T chest 18F-FDG PET/MR hybrid scans were performed in patients suspected of having lung space occupying lesions by CT examination in Henan Provincial People's Hospital from July 8, 2020 to July 29, 2021. The relationship between the maximum standardized uptake value (SUVmax) and apparent diffusion coefficient (ADC) of scanned images and clinical possible prognostic factors was analyzed. Kaplan Meier method, log rank test and univariate and multivariate Cox regression were used to analyze the relationship between metabolic parameter SUVmax and diffusion parameter ADC and overall survival (OS) and progression free survival (PFS).Results The median SUVmax and ADC of 48 NSCLC patients were 5.87 (3.92, 9.66) and 1.41 (1.28, 1.57), respectively. Univariate analysis showed that whether surgery [HR=6.704, 95% confidence interval (CI): 1.422-31.614, P=0.016; HR=7.174, 95% CI: 1.486-34.626, P=0.014], SUVmax (HR=1.170, 95% CI: 1.010-1.355, P=0.036; HR=1.173, 95% CI: 1.010-1.360, P=0.035) and ADC (HR=0.010, 95% CI: 0.000-0.232, P=0.004; HR=0.006, 95% CI: 0. 000-0.156, P=0.002) were the influencing factors of PFS and OS in NSCLC patients. Multivariate analysis showed that ADC (HR=0.012, 95% CI: 0.000-0.386, P=0.012; HR=0.008, 95% CI: 0.000-0.298, P=0.009) was an independent risk factor for PFS and OS in NSCLC patients.Conclusions Both SUVmax and ADC are prognostic factors for NSCLC patients, and ADC may be more helpful in predicting the prognosis of NSCLC patients than SUVmax. 18F-FDG PET/MR metabolic parameters and diffusion parameters have certain value for the prognosis evaluation of NSCLC patients.
[Keywords] non-small cell lung cancer;positron emission tomography/magnetic resonance imaging;18F-fluorodeoxyglucose;prognosis evaluation;magnetic resonance imaging;diffusion weighted imaging

ZHOU Yihang1, 2   JIANG Han1, 2   MENG Nan2, 3   WANG Xinhui2, 3   LIU Xue2, 3   YUAN Jianmin4   YANG Yang5   WANG Zhe4   WANG Meiyun1, 2, 3*  

1 Radiology Department, Xinxiang Medical University Henan Provincial People's Hospital, Zhengzhou 463599, China

2 Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou 450046, China

3 Radiology Department, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou 463599, China

4 Central Research Institute, United Imaging Healthcare Group, Shanghai 201807, China

5 Beijing United Imaging Research Institute of Intelligent Imaging, United Imaging Healthcare Group, Beijing 100094, China

Corresponding author: WANG M Y, E-mail: mywang@ha.edu.cn

Conflicts of interest   None.

Received  2023-09-02
Accepted  2024-03-22
DOI: 10.12015/issn.1674-8034.2024.07.005
Cite this article as: ZHOU Y H, JIANG H, MENG N, et al. Prognostic evaluation value of 18F-FDG PET/MR metabolic and diffusion parameters in non-small cell lung cancer patients[J]. Chin J Magn Reson Imaging, 2024, 15(7): 27-31. DOI:10.12015/issn.1674-8034.2024.07.005.

[1]
HERBST R S, MORGENSZTERN D, BOSHOFF C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553(7689): 446-454. DOI: 10.1038/nature25183.
[2]
THAI A A, SOLOMON B J, SEQUIST L V, et al. Lung cancer[J]. Lancet, 2021, 398(10299): 535-554. DOI: 10.1016/S0140-6736(21)00312-3.
[3]
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30. DOI: 10.3322/caac.21332.
[4]
DETTERBECK F C, BOFFA D J, KIM A W, et al. The eighth edition lung cancer stage classification[J]. Chest, 2017, 151(1): 193-203. DOI: 10.1016/j.chest.2016.10.010.
[5]
BOURREAU C, TREPS L, FAURE S, et al. Therapeutic strategies for non-small cell lung cancer: experimental models and emerging biomarkers to monitor drug efficacies[J/OL]. Pharmacol Ther, 2023, 242: 108347 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/36642389/. DOI: 10.1016/j.pharmthera.2023.108347.
[6]
PARKER A L, BOWMAN E, ZINGONE A, et al. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma[J/OL]. Genome Med, 2022, 14(1): 126 [2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/36404344/. DOI: 10.1186/s13073-022-01127-6.
[7]
JIA T, ZHANG Q G, XU H T, et al. The function of miR-637 in non-small cell lung cancer progression and prognosis[J]. Pulmonology, 2023, 29(2): 111-118. DOI: 10.1016/j.pulmoe.2021.05.005.
[8]
ZHENG Q Z, SU J M, DENG J, et al. Prognostic value of 18F-FDG PET/CT metabolic parameters in patients with non-small cell lung cancer[J]. Chin J Cancer Prev Treat, 2020, 27(16): 1309-1314. DOI: 10.16073/j.cnki.cjcpt.2020.16.06.
[9]
LI X Y, WANG D W, YU L J. Prognostic and predictive values of metabolic parameters of 18F-FDG PET/CT in patients with non-small cell lung cancer treated with chemotherapy[J/OL]. Mol Imaging, 2019, 18: 1536012119846025 [2023-07-29]. https://pubmed.ncbi.nlm.nih.gov/31144578/. DOI: 10.1177/1536012119846025.
[10]
SHEN G H, LAN Y, ZHANG K, et al. Comparison of 18F-FDG PET/CT and DWI for detection of mediastinal nodal metastasis in non-small cell lung cancer: a meta-analysis[J/OL]. PLoS One, 2017, 12(3): e0173104 [2023-08-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333854/. DOI: 10.1371/journal.pone.0173104.
[11]
UMEDA Y, MORIKAWA M, ANZAI M, et al. Predictive value of integrated 18F-FDG PET/MRI in the early response to nivolumab in patients with previously treated non-small cell lung cancer[J/OL]. J Immunother Cancer, 2020, 8(1): e000349 [2023-07-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213911/. DOI: 10.1136/jitc-2019-000349.
[12]
FUJII S, GONDA T, YUNAGA H. Clinical utility of diffusion-weighted imaging in gynecological imaging: revisited[J/OL]. Invest Radiol, 2024, 59(1): 78-91 [2023-08-22]. https://pubmed.ncbi.nlm.nih.gov/37493356/. DOI: 10.1097/RLI.0000000000001004.
[13]
HUANG Z, LI X C, WANG Z X, et al. Application of simultaneous 18 F-FDG PET with monoexponential, biexponential, and stretched exponential model-based diffusion-weighted MR imaging in assessing the proliferation status of lung adenocarcinoma[J]. J Magn Reson Imaging, 2022, 56(1): 63-74. DOI: 10.1002/jmri.28010.
[14]
EVANGELISTA L, ZATTONI F, CASSARINO G, et al. PET/MRI in prostate cancer: a systematic review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2021, 48(3): 859-873. DOI: 10.1007/s00259-020-05025-0.
[15]
HSU C Y, DOUBROVIN M, HUA C H, et al. Radiomics features differentiate between normal and tumoral high-fdg uptake[J/OL]. Sci Rep, 2018, 8(1): 3913 [2023-08-22]. https://pubmed.ncbi.nlm.nih.gov/29500442/. DOI: 10.1038/s41598-018-22319-4.
[16]
FENG P Y, SHAO Z H, DONG B, et al. Application of diffusion kurtosis imaging and 18F-FDG PET in evaluating the subtype, stage and proliferation status of non-small cell lung cancer[J/OL]. Front Oncol, 2022, 12: 989131 [2023-07-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562703/. DOI: 10.3389/fonc.2022.989131.
[17]
ALÇıN G, ŞANLı Y, YEĞEN G, et al. The impact of primary tumor and locoregional metastatic lymph node SUVmax on predicting survival in patients with rectal cancer[J]. Mol Imaging Radionucl Ther, 2020, 29(2): 65-71. DOI: 10.4274/mirt.galenos.2020.40316.
[18]
BRUCKMANN N M, KIRCHNER J, GRUENEISEN J, et al. Correlation of the apparent diffusion coefficient (ADC) and standardized uptake values (SUV) with overall survival in patients with primary non-small cell lung cancer (NSCLC) using 18F-FDG PET/MRI[J/OL]. Eur J Radiol, 2021, 134: 109422 [2023-08-24]. https://pubmed.ncbi.nlm.nih.gov/33271432/. DOI: 10.1016/j.ejrad.2020.109422.
[19]
PAESMANS M, GARCIA C, WONG C Y, et al. Primary tumour standardised uptake value is prognostic in nonsmall cell lung cancer: a multivariate pooled analysis of individual data[J]. Eur Respir J, 2015, 46(6): 1751-1761. DOI: 10.1183/13993003.00099-2015.
[20]
KOK I C, HOOIVELD J S, VAN DE DONK P P, et al. 89Zr-pembrolizumab imaging as a non-invasive approach to assess clinical response to PD-1 blockade in cancer[J]. Ann Oncol, 2022, 33(1): 80-88. DOI: 10.1016/j.annonc.2021.10.213.
[21]
HSIEH C E, CHENG N M, CHOU W C, et al. Pretreatment primary tumor and nodal SUVmax values on 18F-FDG PET/CT images predict prognosis in patients with salivary gland carcinoma[J]. Clin Nucl Med, 2018, 43(12): 869-879. DOI: 10.1097/RLU.0000000000002287.
[22]
GARCÍA VICENTE A M, PÉREZ-BETETA J, AMO-SALAS M, et al. 18F-fluorocholine PET/CT in the prediction of molecular subtypes and prognosis for gliomas[J/OL]. Clin Nucl Med, 2019, 44(10): e548-e558 [2023-08-24]. https://pubmed.ncbi.nlm.nih.gov/31306196/. DOI: 10.1097/RLU.0000000000002715.
[23]
QIN C X, YANG S R, SUN X, et al. 18F-FDG PET/CT for prognostic stratification of patients with extranodal natural killer/T-cell lymphoma[J]. Clin Nucl Med, 2019, 44(3): 201-208. DOI: 10.1097/RLU.0000000000002440.
[24]
ONAL C, ERBAY G, GULER O C, et al. The prognostic value of mean apparent diffusion coefficient measured with diffusion-weighted magnetic resonance image in patients with prostate cancer treated with definitive radiotherapy[J/OL]. Radiother Oncol, 2022, 173: 285-291 [2023-08-24]. https://pubmed.ncbi.nlm.nih.gov/35753556/. DOI: 10.1016/j.radonc.2022.06.011.
[25]
SUROV A, PECH M, OMARI J, et al. Diffusion-weighted imaging reflects tumor grading and microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(1): 10-24. DOI: 10.1159/000511384.
[26]
KARAYAMA M, YOSHIZAWA N, SUGIYAMA M, et al. Intravoxel incoherent motion magnetic resonance imaging for predicting the long-term efficacy of immune checkpoint inhibitors in patients with non-small-cell lung cancer[J/OL]. Lung Cancer, 2020, 143: 47-54 [2023-08-24]. https://pubmed.ncbi.nlm.nih.gov/32203770/. DOI: 10.1016/j.lungcan.2020.03.013.
[27]
WEISS E, FORD J C, OLSEN K M, et al. Apparent diffusion coefficient (ADC) change on repeated diffusion-weighted magnetic resonance imaging during radiochemotherapy for non-small cell lung cancer: a pilot study[J/OL]. Lung Cancer, 2016, 96: 113-119 [2023-08-24]. https://pubmed.ncbi.nlm.nih.gov/27133760/. DOI: 10.1016/j.lungcan.2016.04.001.
[28]
SAMPATH S, RAHMANUDDIN S, SAHOO P, et al. Change in apparent diffusion coefficient is associated with local failure after stereotactic body radiation therapy for non-small cell lung cancer: a prospective clinical trial[J]. Int J Radiat Oncol Biol Phys, 2019, 105(3): 659-663. DOI: 10.1016/j.ijrobp.2019.06.2536.
[29]
WINFIELD J M, WAKEFIELD J C, DOLLING D, et al. Diffusion-weighted MRI in advanced epithelial ovarian cancer: apparent diffusion coefficient as a response marker[J]. Radiology, 2019, 293(2): 374-383. DOI: 10.1148/radiol.2019190545.
[30]
PIANO F D, BUSCARINO V, MARESCA D, et al. Do DWI and quantitative DCE perfusion MR have a prognostic value in high-grade serous ovarian cancer?[J]. Radiol Med, 2019, 124(12): 1315-1323. DOI: 10.1007/s11547-019-01075-z.
[31]
SJÖHOLM T, KORENYUSHKIN A, GAMMELGÅRD G, et al. Whole body FDG PET/MR for progression free and overall survival prediction in patients with relapsed/refractory large B-cell lymphomas undergoing CAR T-cell therapy[J/OL]. Cancer Imaging, 2022, 22(1): 76 [2023-08-24]. https://pubmed.ncbi.nlm.nih.gov/36575477/. DOI: 10.1186/s40644-022-00513-y.
[32]
OHNO Y, KOYAMA H, YOSHIKAWA T, et al. Diffusion-weighted MRI versus 18F-FDG PET/CT: performance as predictors of tumor treatment response and patient survival in patients with non-small cell lung cancer receiving chemoradiotherapy[J]. AJR Am J Roentgenol, 2012, 198(1): 75-82. DOI: 10.2214/AJR.11.6525.
[33]
LIU J F, LV H X, DONG J L, et al. Diffusion-weighted magnetic resonance imaging for early detection of chemotherapy resistance in non-small cell lung cancer[J/OL]. Med Sci Monit, 2019, 25: 6264-6270 [2023-08-24]. https://pubmed.ncbi.nlm.nih.gov/31476196/. DOI: 10.12659/MSM.914236.

PREV Preoperative assessment of MGMT gene promoter methylation status in adult high-grade glioma patients by integrated 18F-FET PET/MR
NEXT Correlation study between 18F-FDG PET/MR imaging radiomic features and PD-L1 expression in cervical cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn