Share:
Share this content in WeChat
X
Clinical Article
The differences between Asperger's syndrome and high functioning autism in brain network: A resting-state fMRI graph theory study
LUO Zhi  YUE Xipeng  GAO Zihan  WEI Wei  BAI Yan  WANG Meiyun 

Cite this article as: LUO Z, YUE X P, GAO Z H, et al. The differences between Asperger's syndrome and high functioning autism in brain network: A resting-state fMRI graph theory study[J]. Chin J Magn Reson Imaging, 2024, 15(7): 39-45. DOI:10.12015/issn.1674-8034.2024.07.007.


[Abstract] Objective The debate about the differences between Asperger's syndrome (AS) and high functioning autism (HFA) has been ongoing for decades. Many previous studies have explored the differences between them from the perspective of cognitive psychology, but few studies have explored them from the perspective of functional brain imaging. In this study, we intend to use graph theory to explore the differences in brain function between these two diseases.Materials and Methods Imaging data from the American Autism Brain Imaging Exchange Database Ⅰ (ABIDEI) were used, including resting fMRI data from patients with AS (n=55) and HFA (n=53). The two groups of image data were preprocessed, and the brain network graph theory parameters of the two groups were calculated. The two sample t test was used to compare the brain network graph theory parameters between the two groups, and a post hoc test (Bonferroni's correction) was performed. Partial correlation analysis was used to investigate the correlation between graph theory indicators with significant differences and clinical data in the two groups.Results There were significant differences in the graph theory indexes of right superior temporal gyrus (P=0.016) and right middle frontal gyrus (P=0.044) between AS group and HFA group. These brain regions are involved in social, empathy, language and cognitive functions. In addition, nodal local efficiency (NLE) was negatively correlated with Autism Diagnostic Observation Schedule (ADOS) score in AS group (left insula: r=-0.366, P=0.033; right insula: r=-0.412, P=0.016).Conclusions The results of this study may provide new ideas and insights into the brain function mechanism of different types of autism and help to reveal the specificity of diagnosis and treatment of different subtypes of autism.
[Keywords] autism spectrum disorder;high functioning autism;Asperger's syndrome;functional magnetic resonance imaging;magnetic resonance imaging;graph theory;brain network

LUO Zhi1, 2   YUE Xipeng1, 2   GAO Zihan1, 2   WEI Wei2   BAI Yan2   WANG Meiyun1, 2, 3*  

1 Department of Medical Imaging, People's Hospital of Zhengzhou University, Zhengzhou 463599, China

2 Department of Medical Imaging, Henan Province People's Hospital, Zhengzhou 463599, China

3 Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou 450046, China

Corresponding author: WANG M Y, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2023-12-15
Accepted  2024-06-25
DOI: 10.12015/issn.1674-8034.2024.07.007
Cite this article as: LUO Z, YUE X P, GAO Z H, et al. The differences between Asperger's syndrome and high functioning autism in brain network: A resting-state fMRI graph theory study[J]. Chin J Magn Reson Imaging, 2024, 15(7): 39-45. DOI:10.12015/issn.1674-8034.2024.07.007.

[1]
LEWANDOWSKA-PIETRUSZKA Z, FIGLEROWICZ M, MAZUR-MELEWSKA K. Microbiota in autism spectrum disorder: A systematic review[J/OL]. Int J Mol Sci, 2023, 24(23): 16660 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/38068995/. DOI: 10.3390/ijms242316660.
[2]
TIETZE F A, HUNDERTMARK L, ROY M, et al. Auditory deficits in audiovisual speech perception in adult Asperger's syndrome: fMRI study[J/OL]. Front Psychol, 2019, 10: 2286 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/31649597/. DOI: 10.3389/fpsyg.2019.02286.
[3]
SHARMA S R, GONDA X, TARAZI F I. Autism spectrum disorder: Classification, diagnosis and therapy[J]. Pharmacol Ther, 2018, 190: 91-104. DOI: 10.1016/j.pharmthera.2018.05.007.
[4]
JAVAHERIPOUR N, WAGNER G, DE LA CRUZ F, et al. Altered brain network organization in adults with Asperger's syndrome: decreased connectome transitivity and assortativity with increased global efficiency[J/OL]. Front Psychiatry, 2023, 14: 1223147 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/37701094/. DOI: 10.3389/fpsyt.2023.1223147.
[5]
DE GIAMBATTISTA C, VENTURA P, TREROTOLI P, et al. Subtyping the autism spectrum disorder: Comparison of children with high functioning autism and Asperger syndrome[J]. J Autism Dev Disord, 2019, 49(1): 138-150. DOI: 10.1007/s10803-018-3689-4.
[6]
SHARMA S, WOOLFSON L M, HUNTER S C. Confusion and inconsistency in diagnosis of Asperger syndrome: a review of studies from 1981 to 2010[J]. Autism, 2012, 16(5): 465-486. DOI: 10.1177/1362361311411935.
[7]
ASSOCIATION A P. Diagnostic and statistical manual of mental disorders. DSM-IV-TR[J]. Washington, DC: American Psychiatric Publication, 2000.
[8]
LORD C, PETKOVA E, HUS V, et al. A multisite study of the clinical diagnosis of different autism spectrum disorders[J]. Arch Gen Psychiatry, 2012, 69(3): 306-313. DOI: 10.1001/archgenpsychiatry.2011.148.
[9]
MONTGOMERY C B, ALLISON C, LAI M C, et al. Do adults with high functioning autism or Asperger syndrome differ in empathy and emotion recognition?[J]. J Autism Dev Disord, 2016, 46(6): 1931-1940. DOI: 10.1007/s10803-016-2698-4.
[10]
WILSON C E, HAPPÉ F, WHEELWRIGHT S J, et al. The neuropsychology of male adults with high-functioning autism or asperger syndrome[J]. Autism Res, 2014, 7(5): 568-581. DOI: 10.1002/aur.1394.
[11]
BENNETT T, SZATMARI P, BRYSON S, et al. Differentiating autism and Asperger syndrome on the basis of language delay or impairment[J]. J Autism Dev Disord, 2008, 38(4): 616-625. DOI: 10.1007/s10803-007-0428-7.
[12]
PAYNTER J, PETERSON C. Language and ToM development in autism versus Asperger syndrome: Contrasting influences of syntactic versus lexical/semantic maturity[J]. Research in Autism Spectrum Disorders, 2010, 4(3): 377-85.
[13]
KRYZA-LACOMBE M, ITURRI N, MONK C S, et al. Face emotion processing in pediatric irritability: Neural mechanisms in a sample enriched for irritability with autism spectrum disorder[J]. J Am Acad Child Adolesc Psychiatry, 2020, 59(12): 1380-1391. DOI: 10.1016/j.jaac.2019.09.002.
[14]
ZHANG T, LIAO Q, ZHANG D, et al. Predicting MCI to AD conversation using integrated sMRI and rs-fMRI: Machine learning and graph theory approach[J/OL]. Front Aging Neurosci, 2021, 13: 688926 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/34421570/. DOI: 10.3389/fnagi.2021.688926.
[15]
XU X, LI W, TAO M, et al. Effective and accurate diagnosis of subjective cognitive decline based on functional connection and graph theory view[J/OL]. Front Neurosci, 2020, 14: 577887 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/33132832/. DOI: 10.3389/fnins.2020.577887.
[16]
LI H, SHI H, JIANG S, et al. Atypical hierarchical connectivity revealed by stepwise functional connectivity in aging[J/OL]. Bioengineering (Basel), 2023, 10(10): 1166 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/37892896/. DOI: 10.3390/bioengineering10101166.
[17]
ZHANG L, WU H, ZHANG A, et al. Aberrant brain network topology in the frontoparietal-limbic circuit in bipolar disorder: a graph-theory study[J]. Eur Arch Psychiatry Clin Neurosci, 2021, 271(7): 1379-1391. DOI: 10.1007/s00406-020-01219-7.
[18]
HENRY T R, DICHTER G S, GATES K. Age and gender effects on intrinsic connectivity in autism using functional integration and segregation[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2018, 3(5): 414-422. DOI: 10.1016/j.bpsc.2017.10.006.
[19]
SIGAR P, UDDIN L Q, ROY D. Altered global modular organization of intrinsic functional connectivity in autism arises from atypical node-level processing[J]. Autism Res, 2023, 16(1): 66-83. DOI: 10.1002/aur.2840.
[20]
SHI A P, YU Y, HU B, et al. Large-scale functional connectivity predicts cognitive impairment related to type 2 diabetes mellitus[J]. World J Diabetes, 2022, 13(2): 110-125. DOI: 10.4239/wjd.v13.i2.110.
[21]
DI MARTINO A, YAN C G, LI Q, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[J]. Mol Psychiatry, 2014, 19(6): 659-667. DOI: 10.1038/mp.2013.78
[22]
WANG J, WANG X, XIA M, et al. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics[J/OL]. Front Hum Neurosci, 2015, 9: 386 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/26175682/. DOI: 10.3389/fnhum.2015.00386.
[23]
OPENNEER T J C, MARSMAN J C, VAN DER MEER D, et al. A graph theory study of resting-state functional connectivity in children with Tourette syndrome[J]. Cortex, 2020, 126: 63-72. DOI: 10.1016/j.cortex.2020.01.006.
[24]
RUBINOV M, SPORNS O. Complex network measures of brain connectivity: uses and interpretations[J]. Neuroimage, 2010, 52(3): 1059-1069. DOI: 10.1016/j.neuroimage.2009.10.003.
[25]
COBOS K L, LONG X, LEBEL C, et al. Increased hippocampal efficiency is associated with greater headache frequency in adolescents with chronic headache[J/OL]. Cereb Cortex Commun, 2023, 4(3): tgad013 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/37559937/. DOI: 10.1093/texcom/tgad013.
[26]
ZHAO X, ZHU S, CAO Y, et al. Abnormalities of gray matter volume and its correlation with clinical symptoms in adolescents with high-functioning autism spectrum disorder[J]. Neuropsychiatr Dis Treat, 2022, 18: 717-730. DOI: 10.2147/ndt.S349247.
[27]
BECKERSON M E, REMMEL R J, GLENN A L, et al. Psychopathic traits and social brain responses during moral evaluation in adolescence[J/OL]. Psychiatry Res Neuroimaging, 2023, 333: 111672 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/37352594/. DOI: 10.1016/j.pscychresns.2023.111672.
[28]
PATRIQUIN M A, DERAMUS T, LIBERO L E, et al. Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder[J]. Hum Brain Mapp, 2016, 37(11): 3957-3978. DOI: 10.1002/hbm.23288.
[29]
GOTTS S J, SIMMONS W K, MILBURY L A, et al. Fractionation of social brain circuits in autism spectrum disorders[J]. Brain, 2012, 135(Pt 9): 2711-2725. DOI: 10.1093/brain/aws160.
[30]
SAXENA A, SHOVESTUL B J, DUDEK E M, et al. Training volitional control of the theory of mind network with real-time fMRI neurofeedback[J/OL]. Neuroimage, 2023, 279: 120334 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/37591479/. DOI: 10.1016/j.neuroimage.2023.120334.
[31]
RAIMO S, CROPANO M, ROLDáN-TAPIA M D, et al. Cognitive and Affective Theory of Mind across Adulthood[J/OL]. Brain Sci, 2022, 12(7): 899 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/35884706/. DOI: 10.3390/brainsci12070899.
[32]
LIU Z, LU K, HAO N, et al. Cognitive reappraisal and expressive suppression evoke distinct neural connections during interpersonal emotion regulation[J/OL]. J Neurosci, 2023 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/37852791/. DOI: 10.1523/jneurosci.0954-23.2023.
[33]
MORITA T, KOSAKA H, SAITO D N, et al. Emotional responses associated with self-face processing in individuals with autism spectrum disorders: an fMRI study[J]. Soc Neurosci, 2012, 7(3): 223-239. DOI: 10.1080/17470919.2011.598945.
[34]
WU Y, WANG H, LI C, et al. Deficits in Key Brain Network for Social Interaction in Individuals with Schizophrenia[J/OL]. Brain Sci, 2023, 13(10): 1403 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/37891773/. DOI: 10.3390/brainsci13101403.
[35]
BOGOLEPOVA I N, KROTENKOVA M V, KONOVALOV R N, et al. Individual variability of Broca's area of the brain in women[J]. Bull Exp Biol Med, 2023, 175(6): 726-729. DOI: 10.1007/s10517-023-05934-8.
[36]
HAN L, KE J, ZHANG D, et al. Altered functional connectivity in language and non-language brain networks in patients diagnosed with acute post-stroke aphasia[J/OL]. Clin Neurol Neurosurg, 2023, 235: 108044 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/37951030/. DOI: 10.1016/j.clineuro.2023.108044.
[37]
IWANAGA R, KAWASAKI C, TSUCHIDA R. Brief report: Comparison of sensory-motor and cognitive function between autism and Asperger syndrome in preschool children[J]. J Autism Dev Disord, 2000, 30(2): 169-174. DOI: 10.1023/a:1005467807937.
[38]
RAMOS T C, BALARDIN J B, SATO J R, et al. Abnormal Cortico-Cerebellar Functional Connectivity in Autism Spectrum Disorder[J/OL]. Front Syst Neurosci, 2018, 12: 74 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/30697151/. DOI: 10.3389/fnsys.2018.00074.
[39]
NAYATE A, TONGA, B J, BRADSHAW J L, et al. Differentiation of High-functioning autism and Asperger's disorder based on neuromata behavior[J]. Journal of Autism and Developmental Disorders, 2012, 42(5): 707-717.
[40]
SOKOLOV A A, MIALL R C, IVRY R B. The cerebellum: Adaptive prediction for movement and cognition[J]. Trends Cogn Sci, 2017, 21(5): 313-332. DOI: 10.1016/j.tics.2017.02.005.
[41]
WANG P, DU F, LI J, et al. Functional magnetic resonance imaging based on Chinese tasks to protect language function in epileptics[J/OL]. Brain Behav, 2021, 11(2): e01979 [2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/33377600/. DOI: 10.1002/brb3.1979.

PREV Correlation study between 18F-FDG PET/MR imaging radiomic features and PD-L1 expression in cervical cancer
NEXT Analysis of dynamic brain function network connectivity in type 2 diabetes patients based on group independent component analysis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn