Share:
Share this content in WeChat
X
Clinical Article
Analysis of dynamic brain function network connectivity in type 2 diabetes patients based on group independent component analysis
ZHANG Ge  ZHANG Yanwei  LIU Taiyuan  WANG Han  WEI Wei  WANG Meiyun 

Cite this article as: ZHANG G, ZHANG Y W, LIU T Y, et al. Analysis of dynamic brain function network connectivity in type 2 diabetes patients based on group independent component analysis[J]. Chin J Magn Reson Imaging, 2024, 15(7): 46-50, 69. DOI:10.12015/issn.1674-8034.2024.07.008.


[Abstract] Objective To explore the changes of spontaneous neural activity in type 2 diabetes mellitus (T2DM) patients without cognitive impairment based on dynamic functional network connectivity (dFNC) analysis.Materials and Methods Thirty-nine T2DM patients without cognitive impairment and 39 age, sex and education matched healthy controls were included in this study. Both groups underwent resting-state functional magnetic resonance imaging (rs-fMRI) scan in a 3.0 T MRI scanner. After being preprocessed, the functional images were further managed using GIFT package to perform dFNC analyzing and statistical comparisons. Correlations between measurements of dFNC and clinical characteristics were also investigated.Results T2DM patients had significantly higher mean dewell time (P=0.014) and fraction time (P=0.039) in state5, and significantly higher functional connectivity between the primary visual network and the salient network (P=0.027), and significantly lower functional connections in the visuospatial network and the basal ganglia network (all P=0.044). However, the aforementioned dynamic brain function indicators show no significant correlation with clinical indicators such as fasting blood glucose levels (all P>0.05).Conclusions There were abnormal changes in dFNC patterns and connectivity of vision-related networks in T2DM patients without cognitive impairment, which might provide more information to help understand neuropathological mechanism in diabetic brains.
[Keywords] type 2 diabetes mellitus;cognitive impairment;resting-state functional magnetic resonance imaging;magnetic resonance imaging;independent component analysis;dynamic brain network connectivity

ZHANG Ge1, 2   ZHANG Yanwei2   LIU Taiyuan1   WANG Han2   WEI Wei1   WANG Meiyun1*  

1 Department of Radiology, Henan Provincial People's Hospital, Zhengzhou 450003, China

2 Department of Radiology Diagnosis, Bethune International Peace Hospital (980th hospital of Joint Logistic Support Force), Shijiazhuang 050051, China

Corresponding author: WANG M Y, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2023-12-18
Accepted  2024-07-11
DOI: 10.12015/issn.1674-8034.2024.07.008
Cite this article as: ZHANG G, ZHANG Y W, LIU T Y, et al. Analysis of dynamic brain function network connectivity in type 2 diabetes patients based on group independent component analysis[J]. Chin J Magn Reson Imaging, 2024, 15(7): 46-50, 69. DOI:10.12015/issn.1674-8034.2024.07.008.

[1]
CLOETE L. Diabetes mellitus: an overview of the types, symptoms, complications and management[J]. Nurs Stand, 2022, 37(1): 61-66. DOI: 10.7748/ns.2021.e11709.
[2]
Chinese Diabetes Society. Guidline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition)[J]. Chin J Diabetes Mellitus, 2021, 23(4): 314-409. DOI: 10.3760/cma.j.cn115791-20210221-00095.
[3]
SRIKANTH V, SINCLAIR A J, HILL-BRIGGS F, et al. Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities[J]. Lancet Diabetes Endocrinol, 2020, 8(6): 535-545. DOI: 10.1016/S2213-8587(20)30118-2.
[4]
CUI Y, TANG T Y, LU C Q, et al. Insulin resistance and cognitive impairment: Evidence from neuroimaging[J]. J Magn Reson Imaging, 2022, 56(6): 1621-1649. DOI: 10.1002/jmri.28358.
[5]
GAO Y J, SUN J, GUO X, et al. Research progress of resting-state functional magnetic resonance imaging in the auxiliary diagnosis and early prognosis of bipolar disorder[J]. Chin J Magn Reson Imaging, 2023, 14(12): 111-115. DOI: 10.12015/issn.1674-8034.2023.12.019.
[6]
HORIEN C, CONSTABLE R T, ROSS D A. Imaging and reimagining the Mind: fMRI and psychiatric illness[J/OL]. Biol Psychiatry, 2021, 89(9): e45-e47 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/33858592/. DOI: 10.1016/j.biopsych.2021.02.013.
[7]
JIA Q, HUANG X H, LIU N, et al. Research progress of resting-state brain functional network in T2DM patients with cognitive impairment[J]. Chin J Magn Reson Imaging, 2021, 12(10): 89-92. DOI: 10.3760/cma.j.cn115791-20210221-00095.
[8]
IBRAHIM B, SUPPIAH S, IBRAHIM N, et al. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: A systematic review[J]. Hum Brain Mapp, 2021, 42(9): 2941-2968. DOI: 10.1002/hbm.25369.
[9]
MATSUI T, YAMASHITA K I. Static and dynamic functional connectivity alterations in Alzheimer's disease and neuropsychiatric diseases[J]. Brain Connect, 2023, 13(5): 307-314. DOI: 10.1089/brain.2022.0044.
[10]
VALSASINA P, HIDALGO M, FILIPPI M, et al. Characterizing rapid fluctuations of resting state functional connectivity in demyelinating, neurodegenerative, and psychiatric conditions: From static to time-varying analysis[J/OL]. Front Neurosci, 2019, 13: 618 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/31354402/. DOI: 10.3389/fnins.2019.00618.
[11]
HUTCHISON R M, WOMELSDORF T, ALLEN E A, et al. Dynamic functional connectivity: promise, issues, and interpretations[J]. Neuroimage. 2013, 80: 360-378. DOI: 10.1016/j.neuroimage.2013.05.079.
[12]
CALHOUN VD, DE LACY N. Ten key observations on the analysis of resting-state functional MR imaging data using independent component analysis[J]. Neuroimaging Clin N Am, 2017, 27(4): 561-579. DOI: 10.1016/j.nic.2017.06.012.
[13]
DAUTRICOURT S, GONNEAUD J, LANDEAU B, et al. Dynamic functional connectivity patterns associated with dementia risk[J/OL]. Alzheimers Res Ther, 2022, 14(1): 72 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/35606867/. DOI: 10.1186/s13195-022-01006-7.
[14]
CATTARINUSSI G, DI GIORGIO A, MORETTI F, et al. Dynamic functional connectivity in schizophrenia and bipolar disorder: A review of the evidence and associations with psychopathological features[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2023, 127: 110827 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/37473954/. DOI: 10.1016/j.pnpbp.2023.110827.
[15]
YANG W, WANG Y, QIN W, et al. Abnormal dynamic functional network connectivity in first-episode, drug-naïve patients with major depressive disorder[J]. J Affect Disord, 2022, 319: 336-343. DOI: 10.1016/j.jad.2022.08.072.
[16]
YUE X, ZHANG G, LI X, et al. Abnormal dynamic functional network connectivity in adults with autism spectrum disorder[J]. Clin Neuroradiol, 2022, 32(4): 1087-1096. DOI: 10.1007/s00062-022-01173-y.
[17]
LV H, WANG Z, TONG E, et al. Resting-state functional MRI: Everything that nonexperts have always wanted to know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399. DOI: 10.3174/ajnr.A5527.
[18]
ALLEN E A, ERHARDT E B, DAMARAJU E, et al. A baseline for the multivariate comparison of resting-state networks[J/OL]. Front Syst Neurosci, 2011, 5: 2 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/21442040/. DOI: 10.3389/fnsys.2011.00002.
[19]
FU Z, DU Y, CALHOUN V D. The Dynamic Functional Network Connectivity Analysis Framework. Engineering (Beijing). 2019, 5(2): 190-193. DOI: 10.1016/j.eng.2018.10.001.
[20]
FU Z, TU Y, DI X, et al. Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism[J]. Neuroimage, 2019, 190: 191-204. DOI: 10.1016/j.neuroimage.2018.06.003.
[21]
ALLEN EA, DAMARAJU E, PLIS SM, et al. Tracking whole-brain connectivity dynamics in the resting state[J]. Cereb Cortex, 2014, 24(3): 663-676. DOI: 10.1093/cercor/bhs352.
[22]
ESPINOZA F A, ANDERSON N E, VERGARA V M, et al. Resting-state fMRI dynamic functional network connectivity and associations with psychopathy traits[J/OL]. Neuroimage Clin, 2019, 24: 101970 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/31473543/. DOI: 10.1016/j.nicl.2019.101970.
[23]
ESPINOZA FA, LIU J, CIAROCHI J, et al. Dynamic functional network connectivity in Huntington's disease and its associations with motor and cognitive measures[J]. Hum Brain Mapp, 2019, 40(6): 1955-1968. DOI: 10.1002/hbm.24504.
[24]
DU Y, FU Z, SUI J, et al. NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders[J/OL]. Neuroimage Clin, 2020, 28: 102375 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/32961402/. DOI: 10.1016/j.nicl.2020.102375.
[25]
DÍEZ-CIRARDA M, STRAFELLA AP, KIM J, et al. Dynamic functional connectivity in Parkinson's disease patients with mild cognitive impairment and normal cognition[J/OL]. Neuroimage Clin, 2017, 17: 847-855. https://pubmed.ncbi.nlm.nih.gov/29527489/. DOI: 10.1016/j.nicl.2017.12.013.
[26]
LIAO Z, SUN W, LIU X, et al. Altered dynamic intrinsic brain activity of the default mode network in Alzheimer's disease: A resting-state fMRI study[J/OL]. Front Hum Neurosci, 2022, 16: 951114 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/36061502/. DOI: 10.3389/fnhum.2022.951114.
[27]
WANG J, WANG P, JIANG Y, et al. Hippocampus-Based Dynamic Functional Connectivity Mapping in the Early Stages of Alzheimer's Disease[J]. J Alzheimers Dis, 2022, 85(4): 1795-1806. DOI: 10.3233/JAD-215239.
[28]
BERENTE DB, ZSUFFA J, WERBER T, et al. Alteration of visuospatial system as an early marker of cognitive decline: A double-center neuroimaging study[J/OL]. Front Aging Neurosci, 2022, 14: 854368 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/35754966/. DOI: 10.3389/fnagi.2022.854368.
[29]
SHEN W, TU Y, GOLLUB RL, et al. Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study[J/OL]. Neuroimage Clin, 2019, 22: 101775 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/30927604/. DOI: 10.1016/j.nicl.2019.101775.
[30]
BOSTAN AC, STRICK PL. The basal ganglia and the cerebellum: nodes in an integrated network[J]. Nat Rev Neurosci, 2018, 19(6): 338-350. DOI: 10.1038/s41583-018-0002-7.
[31]
MENON V, PALANIYAPPAN L, SUPEKAR K. Integrative brain network and salience models of psychopathology and cognitive dysfunction in schizophrenia[J]. Biol Psychiatry, 2023, 94(2): 108-120. DOI: 10.1016/j.biopsych.2022.09.029.
[32]
BAGARINAO E, WATANABE H, MAESAWA S, et al. Reorganization of brain networks and its association with general cognitive performance over the adult lifespan[J/OL]. Sci Rep, 2019, 9(1): 11352 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/31388057/. DOI: 10.1038/s41598-019-47922-x.
[33]
ZHANG M, GUAN Z, ZHANG Y, et al. Disrupted coupling between salience network segregation and glucose metabolism is associated with cognitive decline in Alzheimer's disease - A simultaneous resting-state FDG-PET/fMRI study[J/OL]. Neuroimage Clin. 2022, 34: 102977 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/35259618/. DOI: 10.1016/j.nicl.2022.102977.
[34]
WU K, JELFS B, MAHMOUD SS, et al. Tracking functional network connectivity dynamics in the elderly[J/OL]. Front Neurosci, 2023, 17: 1146264 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/37021138/. DOI: 10.3389/fnins.2023.1146264.
[35]
QI D, WANG A, CHEN Y, et al. Default Mode Network Connectivity and Related White Matter Disruption in Type 2 Diabetes Mellitus Patients Concurrent with Amnestic Mild Cognitive Impairment[J]. Curr Alzheimer Res, 2017, 14(11): 1238-1246. DOI: 10.2174/1567205014666170417113441.
[36]
WANG J, ZHOU S, DENG D, et al. Compensatory thalamocortical functional hyperconnectivity in type 2 Diabetes Mellitus[J]. Brain Imaging Behav, 2022, 16(6): 2556-2568. DOI: 10.1007/s11682-022-00710-0.
[37]
LIU H, LIU J, PENG L, et al. Changes in default mode network connectivity in different glucose metabolism status and diabetes duration[J/OL]. Neuroimage Clin, 2019, 21: 101629 [2023-12-18]. https://pubmed.ncbi.nlm.nih.gov/30573410/. DOI: 10.1016/j.nicl.2018.101629.
[38]
GAN F, ZHOU S L, LIU H, et al. Interhemispheric voxel-mirrored homotopic connectivity in patients with type 2 diabetes[J]. Chin J Magn Reson Imaging, 2022, 13(8): 71-74. DOI: 10.12015/issn.1674-8034.2022.08.013.

PREV The differences between Asperger,s syndrome and high functioning autism in brain network: A resting-state fMRI graph theory study
NEXT Functional connectivity within the default mode network can predict the sleep disturbance scores of the patients with depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn