Share:
Share this content in WeChat
X
Clinical Article
Impact of regulating amygdala activity in patients with insomnia disorders using rtfMRI-NF technology on the centrality of the brain
GU Yuang  ZHANG Miao  JIA Shulei  SUN Yongbing  QI Fei  WU Xiaoling  ZOU Zhi  LI Zhonglin  ZHOU Jing  DOU Shewei  YAN Fengshan  LI Yongli 

Cite this article as: GU Y A, ZHANG M, JIA S L, et al. Impact of regulating amygdala activity in patients with insomnia disorders using rtfMRI-NF technology on the centrality of the brain[J]. Chin J Magn Reson Imaging, 2024, 15(7): 64-69. DOI:10.12015/issn.1674-8034.2024.07.011.


[Abstract] Objective To investigate the effect of real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) on the modulation of amygdala activity and its impact on the degree centrality (DC) in the brains of patients with insomnia disorder (ID).Materials and Methods The study applied rtfMRI-NF to modulate the amygdala activity of 34 ID patients, assessing the effects before and after treatment using Polysomnography (PSG) and the Pittsburgh Sleep Quality Index (PSQI). Paired t-tests were used to analyze the differences in DC values of brain regions before and after the intervention, exploring the changes in DC values and their correlations with clinical scale data.Results After rtfMRI-NF modulation, significant reductions were observed in the PSQI scores and Insomnia Severity Index (ISI) among ID patients (P<0.05 for both). Furthermore, an increase in the DC value of the right parahippocampal gyrus was noted (GRF corrected, voxel-level P<0.001, cluster-level P<0.05), which negatively correlated with the change in sleep efficiency (r=-0.478, P<0.05); Conversely, a decrease in the DC value of areas such as the right dorsolateral prefrontal cortex was observed (GRF corrected, voxel-level P<0.001, cluster-level P<0.05), positively correlating with the post-intervention ISI scores (r =0.488, P<0.05).Conclusions rtfMRI-NF can reshape the DC values of specific brain regions in ID patients and effectively improve their sleep quality.
[Keywords] insomnia disorder;real-time functional magnetic resonance imaging neurofeedback;magnetic resonance imaging;resting-state functional magnetic resonance imaging;amygdala;degree centrality

GU Yuang1   ZHANG Miao2   JIA Shulei1   SUN Yongbing2   QI Fei3   WU Xiaoling4   ZOU Zhi3   LI Zhonglin3   ZHOU Jing5   DOU Shewei3   YAN Fengshan3   LI Yongli5*  

1 Xinxiang Medical University Henan Provincial People's Hospital, Xinxiang 453003, China

2 Zhengzhou University People's Hospital, Zhengzhou 450003, China

3 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

4 Department of Nuclear Medicine, Henan Provincial People's Hospital/People's Hospital of Zhengzhou University, Zhengzhou 450003, China

5 Department of Health Management, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, China

Corresponding author: LI Y L, E-mail: shyliyongli@126.com

Conflicts of interest   None.

Received  2024-03-30
Accepted  2024-06-25
DOI: 10.12015/issn.1674-8034.2024.07.011
Cite this article as: GU Y A, ZHANG M, JIA S L, et al. Impact of regulating amygdala activity in patients with insomnia disorders using rtfMRI-NF technology on the centrality of the brain[J]. Chin J Magn Reson Imaging, 2024, 15(7): 64-69. DOI:10.12015/issn.1674-8034.2024.07.011.

[1]
LIU T, WANG G Y, ZHANG X P, et al. B serum proteome profiles revealed dysregulated proteins and mechanisms associated with insomnia patients: a preliminary study[J/OL]. Front Integr Neurosci, 2022, 16: 936955 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/35958162/. DOI: 10.3389/fnint.2022.936955.
[2]
CHUNG K F, YEUNG W F, HO F Y, et al. Cross-cultural and comparative epidemiology of insomnia: the Diagnostic and statistical manual (DSM), International classification of diseases (ICD) and International classification of sleep disorders (ICSD)[J]. Sleep Med, 2015, 16(4): 477-482. DOI: 10.1016/j.sleep.2014.10.018.
[3]
KHAN M S, AOUAD R. The effects of insomnia and sleep loss on cardiovascular disease[J]. Sleep Med Clin, 2022, 17(2): 193-203. DOI: 10.1016/j.jsmc.2022.02.008.
[4]
BATALLA-MARTÍN D, BELZUNEGUI-ERASO A, MIRALLES GARIJO E, et al. Insomnia in schizophrenia patients: prevalence and quality of life[J/OL]. Int J Environ Res Public Health, 2020, 17(4): 1350 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/32093111/. DOI: 10.3390/ijerph17041350.
[5]
WANG Q, XIONG Y X, ZHANG Z L, et al. Study of ReHo and fALFF in patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Magn Reson Imag, 2023, 14(12): 98-102. DOI: 10.12015/issn.1674-8034.2023.12.016.
[6]
ALBIKAWI Z F. Fear related to COVID-19, mental health issues, and predictors of insomnia among female nursing college students during the pandemic[J/OL]. Healthcare, 2023, 11(2): 174 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/36673542/. DOI: 10.3390/healthcare11020174.
[7]
PASQUINI S, CONTRI C, MERIGHI S, et al. Adenosine receptors in neuropsychiatric disorders: fine regulators of neurotransmission and potential therapeutic targets[J/OL]. Int J Mol Sci, 2022, 23(3): 1219 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/35163142/. DOI: 10.3390/ijms23031219.
[8]
BAYLAN S, GRIFFITHS S, GRANT N, et al. Incidence and prevalence of post-stroke insomnia: a systematic review and meta-analysis[J/OL]. Sleep Med Rev, 2020, 49: 101222 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/31739180/. DOI: 10.1016/j.smrv.2019.101222.
[9]
HEUNIS S, LAMERICHS R, ZINGER S, et al. Quality and denoising in real-time functional magnetic resonance imaging neurofeedback: a methods review[J]. Hum Brain Mapp, 2020, 41(12): 3439-3467. DOI: 10.1002/hbm.25010.
[10]
THIBAULT R T, MACPHERSON A, LIFSHITZ M, et al. Neurofeedback with fMRI: a critical systematic review[J/OL]. Neuroimage, 2018, 172: 786-807 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/29288868/. DOI: 10.1016/j.neuroimage.2017.12.071.
[11]
ZHU Y S, GAO H, TONG L, et al. Emotion regulation of hippocampus using real-time fMRI neurofeedback in healthy human[J/OL]. Front Hum Neurosci, 2019, 13: 242 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/31379539/. DOI: 10.3389/fnhum.2019.00242.
[12]
DUDEK E, DODELL-FEDER D. The efficacy of real-time functional magnetic resonance imaging neurofeedback for psychiatric illness: a meta-analysis of brain and behavioral outcomes[J/OL]. Neurosci Biobehav Rev, 2021, 121: 291-306 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/33370575/. DOI: 10.1016/j.neubiorev.2020.12.020.
[13]
LI K, ZHANG C, TONG L, et al. Efficacy prediction of real-time functional magnetic resonance imaging neurofeedback therapy for insomnia based on functional connectivity[J]. J Inf Eng Univ, 2023, 24(6): 699-704. DOI: 10.3939/j.issn.1671-0673.2023.06.010.
[14]
CAÑETE-MASSÉ C, CARBÓ-CARRETÉ M, PERÓ-CEBOLLERO M, et al. Abnormal degree centrality and functional connectivity in Down syndrome: a resting-state fMRI study[J/OL]. Int J Clin Health Psychol, 2023, 23(1): 100341 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/36262644/. DOI: 10.1016/j.ijchp.2022.100341.
[15]
JIA F N, CHEN X, DU X D, et al. Aberrant degree centrality profiles during rumination in major depressive disorder[J]. Hum Brain Mapp, 2023, 44(17): 6245-6257. DOI: 10.1002/hbm.26510.
[16]
ZHANG J H, SCHOLTENS L H, WEI Y B, et al. Topography impacts topology: anatomically central areas exhibit a "high-level connector" profile in the human cortex[J]. Cereb Cortex, 2020, 30(3): 1357-1365. DOI: 10.1093/cercor/bhz171.
[17]
FENG S X, HUANG Y Y, LU H X, et al. Association between degree centrality and neurocognitive impairments in patients with Schizophrenia: a Longitudinal rs-fMRI Study[J/OL]. J Psychiatr Res, 2024, 173: 115-123 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/38520845/. DOI: 10.1016/j.jpsychires.2024.03.007.
[18]
SHAN A D, ZHANG H, GAO M X, et al. Aberrant voxel-based degree centrality and functional connectivity in Parkinson's disease patients with fatigue[J]. CNS Neurosci Ther, 2023, 29(9): 2680-2689. DOI: 10.1111/cns.14212.
[19]
XIONG J, YU C, SU T, et al. Altered brain network centrality in patients with mild cognitive impairment: an fMRI study using a voxel-wise degree centrality approach[J]. Aging, 2021, 13(11): 15491-15500. DOI: 10.18632/aging.203105.
[20]
LUO B, QIU C, CHANG L, et al. Altered brain network centrality in Parkinson's disease patients after deep brain stimulation: a functional MRI study using a voxel-wise degree centrality approach[J]. J Neurosurg, 2023, 138(6): 1712-1719. DOI: 10.3171/2022.9.JNS221640.
[21]
ZHANG S F, LI B, LIU K, et al. Abnormal voxel-based degree centrality in patients with postpartum depression: a resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2022, 16: 914894 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/35844214/. DOI: 10.3389/fnins.2022.914894.
[22]
LI J N, SHEETS P L. Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala[J]. Pain, 2020, 161(1): 166-176. DOI: 10.1097/j.pain.0000000000001691.
[23]
ZHANG M, WU X L, LI Z L, et al. Regulation of amygdala by rtfMRI-NF technique in improving insomnia disorder[J]. Chin J Magn Reson Imag, 2023, 14(7): 5-9. DOI: 10.12015/issn.1674-8034.2023.07.002.
[24]
SCHUFFELEN J, MAURER L F, LORENZ N, et al. The clinical effects of digital cognitive behavioral therapy for insomnia in a heterogenous study sample: results from a randomized controlled trial[J/OL]. Sleep, 2023, 46(11): zsad184 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/37428712/. DOI: 10.1093/sleep/zsad184.
[25]
JONES D T, GRAFF-RADFORD J. Executive dysfunction and the prefrontal cortex[J]. Continuum, 2021, 27(6): 1586-1601. DOI: 10.1212/CON.0000000000001009.
[26]
MAYELI A, MISAKI M, ZOTEV V, et al. Self-regulation of ventromedial prefrontal cortex activation using real-time fMRI neurofeedback-Influence of default mode network[J]. Hum Brain Mapp, 2020, 41(2): 342-352. DOI: 10.1002/hbm.24805.
[27]
ISODA M. The role of the medial prefrontal cortex in moderating neural representations of self and other in Primates[J/OL]. Annu Rev Neurosci, 2021, 44: 295-313 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/33752448/. DOI: 10.1146/annurev-neuro-101420-011820.
[28]
KABOODVAND N, BÄCKMAN L, NYBERG L, et al. The retrosplenial cortex: a memory gateway between the cortical default mode network and the medial temporal lobe[J]. Hum Brain Mapp, 2018, 39(5): 2020-2034. DOI: 10.1002/hbm.23983.
[29]
MÜLLER N C J, DRESLER M, JANZEN G, et al. Medial prefrontal decoupling from the default mode network benefits memory[J/OL]. Neuroimage, 2020, 210: 116543 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/31940475/. DOI: 10.1016/j.neuroimage.2020.116543.
[30]
JIANG B H, HE D M, GUO Z W, et al. Effect-size seed-based d mapping of resting-state fMRI for persistent insomnia disorder[J]. Sleep Breath, 2020, 24(2): 653-659. DOI: 10.1007/s11325-019-02001-3.
[31]
JIANG G H, FENG Y, LI M, et al. Distinct alterations of functional connectivity of the basal forebrain subregions in insomnia disorder[J/OL]. Front Psychiatry, 2022, 13: 1036997 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/36311494/. DOI: 10.3389/fpsyt.2022.1036997.
[32]
ROLLS E T. The cingulate cortex and limbic systems for emotion, action, and memory[J]. Brain Struct Funct, 2019, 224(9): 3001-3018. DOI: 10.1007/s00429-019-01945-2.
[33]
TEGHIL A, BONAVITA A, GUARIGLIA C, et al. Commonalities and specificities between environmental navigation and autobiographical memory: a synthesis and a theoretical perspective[J/OL]. Neurosci Biobehav Rev, 2021, 127: 928-945 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/34102149/. DOI: 10.1016/j.neubiorev.2021.06.012.
[34]
HERWEG N A, SHARAN A D, SPERLING M R, et al. Reactivated spatial context guides episodic recall[J]. J Neurosci, 2020, 40(10): 2119-2128. DOI: 10.1523/JNEUROSCI.1640-19.2019.
[35]
YANG Y, LIANG W, WANG Y J, et al. Hippocampal atrophy in neurofunctional subfields in insomnia individuals[J/OL]. Front Neurol, 2022, 13: 1014244 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/36324378/. DOI: 10.3389/fneur.2022.1014244.
[36]
XU M H, WANG Q, LI B, et al. Cerebellum and hippocampus abnormalities in patients with insomnia comorbid depression: a study on cerebral blood perfusion and functional connectivity[J/OL]. Front Neurosci, 2023, 17: 1202514 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/37397441/. DOI: 10.3389/fnins.2023.1202514.
[37]
MORIN C M, BELLEVILLE G, BÉLANGER L, et al. The Insomnia Severity Index: psychometric indicators to detect insomnia cases and evaluate treatment response[J]. Sleep, 2011, 34(5): 601-608. DOI: 10.1093/sleep/34.5.601.
[38]
CHUNG S, CHO I K, KIM J, et al. Efficacy and safety of digital therapeutic application of Sleep Index-Based Treatment for Insomnia (dSIBT-I): a pilot study[J/OL]. J Sleep Res, 2024, 33(1): e14039 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/37704214/. DOI: 10.1111/jsr.14039.
[39]
LEERSSEN J, WASSING R, RAMAUTAR J R, et al. Increased hippocampal-prefrontal functional connectivity in insomnia[J/OL]. Neurobiol Learn Mem, 2019, 160: 144-150 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/29448003/. DOI: 10.1016/j.nlm.2018.02.006.
[40]
OTT T, NIEDER A. Dopamine and cognitive control in prefrontal cortex[J]. Trends Cogn Sci, 2019, 23(3): 213-234. DOI: 10.1016/j.tics.2018.12.006.
[41]
ERA V, CARNEVALI L, THAYER J F, et al. Dissociating cognitive, behavioral and physiological stress-related responses through dorsolateral prefrontal cortex inhibition[J/OL]. Psychoneuroendocrinology, 2021, 124: 105070 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/33310375/. DOI: 10.1016/j.psyneuen.2020.105070.
[42]
MOLAVI P, AZIZIARAM S, BASHARPOOR S, et al. Repeated transcranial direct current stimulation of dorsolateral-prefrontal cortex improves executive functions, cognitive reappraisal emotion regulation, and control over emotional processing in borderline personality disorder: a randomized, sham-controlled, parallel-group study[J/OL]. J Affect Disord, 2020, 274: 93-102 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/32469838/. DOI: 10.1016/j.jad.2020.05.007.
[43]
NEJATI V, MAJDI R, SALEHINEJAD M A, et al. The role of dorsolateral and ventromedial prefrontal cortex in the processing of emotional dimensions[J/OL]. Sci Rep, 2021, 11(1): 1971 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/33479323/. DOI: 10.1038/s41598-021-81454-7.
[44]
ZUO Z W, RAN S H, WANG Y, et al. Altered structural covariance among the dorsolateral prefrontal cortex and amygdala in treatment-Naïve patients with major depressive disorder[J/OL]. Front Psychiatry, 2018, 9: 323 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/30079037/. DOI: 10.3389/fpsyt.2018.00323.
[45]
ZHANG L, VERWER R W H, LUCASSEN P J, et al. Sex difference in glia gene expression in the dorsolateral prefrontal cortex in bipolar disorder: relation to psychotic features[J/OL]. J Psychiatr Res, 2020, 125: 66-74 [2024-03-29]. https://pubmed.ncbi.nlm.nih.gov/32208195/. DOI: 10.1016/j.jpsychires.2020.03.003.
[46]
SEXTON C E, STORSVE A B, WALHOVD K B, et al. Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults[J]. Neurology, 2014, 83(11): 967-973. DOI: 10.1212/WNL.0000000000000774.
[47]
CHENG Y X, XUE T, DONG F, et al. Abnormal functional connectivity of the salience network in insomnia[J]. Brain Imaging Behav, 2022, 16(2): 930-938. DOI: 10.1007/s11682-021-00567-9.
[48]
BROOKS S, JACOBS G E, BOER P D, et al. The selective orexin-2 receptor antagonist seltorexant improves sleep: an exploratory double-blind, placebo controlled, crossover study in antidepressant-treated major depressive disorder patients with persistent insomnia[J]. J Psychopharmacol, 2019, 33(2): 202-209. DOI: 10.1177/0269881118822258.

PREV The application value of fractional amplitude of low frequency fluctuation in the treatment of chronic fatigue syndrome with anxiety depression by Prolong Life With Nine Turn method
NEXT Meta analysis of the diagnostic value of carotid artery high-resolution magnetic resonance vessel wall imaging in the occurrence and recurrence of ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn