Share:
Share this content in WeChat
X
Clinical Article
Diffusion kurtosis imaging of brain white matter alteration in patients with acute mild traumatic brain injury based on the TBSS method
GUO Ran  XIN Ruiqiang  SHI Yijie  ZHONG Jiali  YANG Hongyu  PENG Ruchen 

Cite this article as: GUO R, XIN R Q, SHI Y J, et al. Diffusion kurtosis imaging of brain white matter alteration in patients with acute mild traumatic brain injury based on the TBSS method[J]. Chin J Magn Reson Imaging, 2024, 15(7): 94-98. DOI:10.12015/issn.1674-8034.2024.07.016.


[Abstract] Objective Diffusion kurtosis imaging (DKI) was used to study the white matter microstructure changes in mild traumatic brain injury (mTBI) patients, so as to explore the clinical application value of DKI in mTBI patients.Materials and Methods The clinical and DKI data of 27 mTBI patients who were diagnosed in our hospital and 27 healthy control subjects matched in gender, age, and years of education recruited from January to December 2018 were analyzed. Using the tract-based spatial statistics (TBSS) method to analyze the differences in brain regions and their fractional anisotropy (FA) value, mean kurtosis (MK) value, axial kurtosis (AK) value, radial kurtosis (RK) value, and kurtosis fractional anisotropy (KFA) value between the mTBI patients subjects and the control subjects.Results The FA value of the left superior longitudinal fasciculus (temporal part) was lower in mTBI patients (0.450±0.048) than that in the control subjects (0.480±0.028, t=-2.253, P=0.028 5). The AK value of the forceps major was lower in mTBI patients (0.68±0.05) than that in the control subjects (0.72±0.05, t=-2.407, P=0.019 7). The RK value of the right cingulum (hippocampus) was lower in mTBI patients (0.89±0.15) than that in the control subjects (0.99±0.18, t=-2.044, P=0.0 460). The KFA values of the right anterior thalamic radiation, the right cingulum (cingulate gyrus), the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus, and the right superior longitudinal fasciculus (temporal part) were lower in mTBI patients [(0.49±0.19), (0.50±0.32), (0.48±0.30), (0.49±0.03), and (0.54±0.59)] than that in the control subjects[(0.51±0.13), (0.52±0.20), (0.50±0.02), (0.51±0.26), and (0.57±0.46), t=-2.15, -2.95, -2.37, -2.38, and -2.25, respectively,all P<0.05]. However, there was no statistically significant difference in MK values between the subjectss (P>0.05).Conclusions The DKI parameter serves as a neuroimaging biomarker for assessing brain white matter alterations in patients with acute mTBI, capable of unveiling minute variations in white matter microstructure.
[Keywords] traumatic brain injury;magnetic resonance imaging;diffusion kurtosis imaging;tract-based spatial statistics;kurtosis fractional anisotropy

GUO Ran   XIN Ruiqiang   SHI Yijie   ZHONG Jiali   YANG Hongyu   PENG Ruchen*  

Department of Radiology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China

Corresponding author: PENG R C, E-mail: pengruchen@ccmu.edu.cn

Conflicts of interest   None.

Received  2023-12-16
Accepted  2024-07-12
DOI: 10.12015/issn.1674-8034.2024.07.016
Cite this article as: GUO R, XIN R Q, SHI Y J, et al. Diffusion kurtosis imaging of brain white matter alteration in patients with acute mild traumatic brain injury based on the TBSS method[J]. Chin J Magn Reson Imaging, 2024, 15(7): 94-98. DOI:10.12015/issn.1674-8034.2024.07.016.

[1]
GRANT M, LIU J, WINTERMARK M, et al. Current state of diffusion-weighted imaging and diffusion tensor imaging for traumatic brain injury prognostication[J]. Neuroimaging Clin N Am, 2023, 33(2): 279-297. DOI: 10.1016/j.nic.2023.01.004.
[2]
PAVLOVIC D, PEKIC S, STOJANOVIC M, et al. Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae[J]. Pituitary, 2019, 22(3): 270-282. DOI: 10.1007/s11102-019-00957-9.
[3]
KIM E, YOO R E, SEONG M Y, et al. A systematic review and data synthesis of longitudinal changes in white matter integrity after mild traumatic brain injury assessed by diffusion tensor imaging in adults[J/OL]. Eur J Radiol, 2022, 147: 110117 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/34973540/. DOI: 10.1016/j.ejrad.2021.110117.
[4]
SUN L N, WANG P Y. Application progress of functional magnetic resonance imaging technology in traumatic brain injury[J]. Chin J Magn Reson Imaging, 2022, 13(7): 156-159. DOI: 10.12015/issn.1674-8034.2022.07.031.
[5]
WILDE E A, MCCAULEY S R, HUNTER J V, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents[J]. Neurology, 2008, 70(12): 948-955. DOI: 10.1212/01.wnl.0000305961.68029.54.
[6]
BAZARIAN J J, ZHONG J, BLYTH B, et al. Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study[J]. J Neurotrauma, 2007, 24(9): 1447-1459. DOI: 10.1089/neu.2007.0241.
[7]
ZUO L, TIAN T, WANG B, et al. Microstructural white matter abnormalities in overactive bladder syndrome evaluation with diffusion kurtosis imaging tract-based spatial statistics analysis[J/OL]. World J Urol, 2024, 42(1): 36 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/38217714/. DOI: 10.1007/s00345-023-04709-0.
[8]
UMESH RUDRAPATNA S, WIELOCH T, BEIRUP K, et al. Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology[J]. Neuroimage, 2014, 97: 363-373. DOI: 10.1016/j.neuroimage.2014.04.013.
[9]
HU H, ZHOU J, JIANG W H, et al. Diagnosis of dysthyroid optic neuropathy: combined value of orbital MRI and intracranial visual pathway diffusion kurtosis imaging[J/OL]. Eur Radiol, 2024 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/38276980/. DOI: 10.1007/s00330-024-10615-9.
[10]
LI Y, WEN H, LI H, et al. Characterisation of brain microstructural alterations in children with obstructive sleep apnea syndrome using diffusion kurtosis imaging[J/OL]. J Sleep Res, 2023, 32(2): e13710 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/36377256/. DOI: 10.1111/jsr.13710.
[11]
SMITH S, JENKINSON M, JOHANSEN-BERG H, et al. Tract-based spatial statistics:voxelwise analysis of multi-subject diffusion data[J]. Neuroimage, 2006, 31(4): 1487-1505. DOI: 10.1016/j.neuroimage.2006.02.024.
[12]
KARLSEN R H, EINARSEN C, MOE H K, et al. Diffusion kurtosis imaging in mild traumatic brain injury and postconcussional syndrome[J]. J Neurosci Res, 2019, 97(5): 568-581. DOI: 10.1002/jnr.24383.
[13]
GROSSMAN E J, GE Y, JENSEN J H, et al. Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study[J]. J Neurotrauma, 2012, 29(13): 2318-2327. DOI: 10.1089/neu.2011.1763.
[14]
BLAAUW J, MEINERS L C. The splenium of the corpus callosum: embryology, anatomy, function and imaging with pathophysiological hypothesis[J]. Neuroradiology, 2020, 62(5): 563-585. DOI: 10.1007/s00234-019-02357-z.
[15]
HUANG S, HUANG C, LI M, et al. White matter abnormalities and cognitive deficit after mild traumatic brain injury: comparing DTI, DKI, and NODDI[J]. Front Neurol, 2022, 13: 803066 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/35359646/. DOI: 10.3389/fneur.2022.803066.
[16]
STOKUM J A, SOURS C, ZHUO J, et al. A longitudinal evaluation of diffusion kurtosis imaging in patients with mild traumatic brain injury[J]. Brain In, 2015, 29(1): 47-57. DOI: 10.3109/02699052.2014.947628.
[17]
RAJ S, VYAS S, MODI M, et al. Comparative evaluation of diffusion kurtosis imaging and diffusion tensor imaging in detecting cerebral microstructural changes in alzheimer disease[J/OL]. Acad Radio, 2022, 29: S63-S70 [2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/33612351/. DOI: 10.1016/j.acra.2021.01.018.
[18]
ZHU Q, YAN Z, SHI Z, et al. Increased cortical lesion load contributed to pathological changes beyond focal lesion in cortical gray matter of multiple sclerosis: a diffusion kurtosis imaging analysis[J]. Cereb Cortex, 2023, 33(21): 10867-10876. DOI: 10.1093/cercor/bhad332.
[19]
GUPTA P, VYAS S, SALAN T, et al. Whole brain atlas-based diffusion kurtosis imaging parameters for evaluation of minimal hepatic encephalopathy[J]. Neuroradiol J, 2022, 35(1): 67-76. DOI: 10.1177/19714009211026924.
[20]
VINCENT J L, KAHN I, SNYDER A Z, et al. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity[J]. J Neurophysiol, 2008, 100(6): 3328-3342. DOI: 10.1152/jn.90355.2008.
[21]
STENBERG J, SKANDSEN T, GØRAN MOEN K, et al. Diffusion tensor and kurtosis imaging findings the first year following mild traumatic brain injury[J]. J Neurotrauma, 2023, 40(5-6): 457-471. DOI: 10.1089/neu.2022.0206.
[22]
NÆSS-SCHMIDT E T, BLICHER J U, ESKILDSEN S F, et al. Microstructural changes in the thalamus after mild traumatic brain injury: a longitudinal diffusion and mean kurtosis tensor MRI study[J]. Brain Inj, 2017, 31(2): 230-236. DOI: 10.1080/02699052.2016.1229034.
[23]
ZHUO J, XU S, PROCTOR J L, et al. Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury[J]. Neuroimage, 2012, 59(1): 467-477. DOI: 10.1016/j.neuroimage.2011.07.050.
[24]
DONALD C L MAC, DIKRANIAN K, BAYLY P, et al. Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury[J]. J Neurosci, 2007, 27(44): 11869-11876. DOI: 10.1523/JNEUROSCI.3647-07.2007.

PREV A VBM study on the effect of moderate-intensity aerobic exercise on the brain structure of female college students
NEXT Value of dynamic contrast-enhanced MRI in evaluating the microcirculation of extraocular muscle and stage of thyroid-associated ophthalmopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn