Share:
Share this content in WeChat
X
Clinical Article
Value of dynamic contrast-enhanced MRI in evaluating the microcirculation of extraocular muscle and stage of thyroid-associated ophthalmopathy
PU Xiongying  HU Hao  LU Jinling  WU Qian  ZHOU Jiang  CHEN Huanhuan  WU Feiyun  XU Xiaoquan 

Cite this article as: PU X Y, HU H, LU J L, et al. Value of dynamic contrast-enhanced MRI in evaluating the microcirculation of extraocular muscle and stage of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imaging, 2024, 15(7): 99-104. DOI:10.12015/issn.1674-8034.2024.07.017.


[Abstract] Objective To assess the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for staging thyroid-associated ophthalmopathy (TAO).Materials and Methods We prospectively enrolled 56 TAO patients , and divided them into active group (37 patients with 74 eyes) and inactive group (19 patients with 38 eyes). The minimum, mean, and maximum values of semi-quantitative [time to peak (TTP), area under the time-signal intensity curve (AUC), maximum enhancement slope (Slopemax)] and quantitative [volume transfer constant (Ktrans), the rate constant (Kep), fractional volume of the extravascular-extracellular space (Ve)] parameters were calculated and compared between groups. Multivariate logistic regression analysis was applied to identify the independent imaging indicators of active TAO. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the identified significant imaging parameters and their combination.Results Active patients showed significantly higher mean TTP, mean and maximum AUC, mean and maximum Ve than inactive patients (P<0.05). Maximum AUC and mean Ve were found to be independent variables for determining the disease activity (P=0.030, 0.014, respectively). The area under ROC curve of active TAO was 0.689 and 0.673, respectively, using the maximum AUC and the mean Ve values. Combination of two parameters could determine the active TAO with optimal performance (area under the ROC curve 0.731).Conclusions DCE-MRI-derived semi-quantitative and quantitative parameters are all useful for determining the activity of TAO. The model combining maximum AUC and mean Ve can effectively help to stage the patients with TAO.
[Keywords] autoimmune eye disease;thyroid-associated ophthalmopathy;clinical staging;extraocular muscle;dynamic contrast-enhanced;magnetic resonance imaging

PU Xiongying1   HU Hao1   LU Jinling1   WU Qian1   ZHOU Jiang1   CHEN Huanhuan2   WU Feiyun1   XU Xiaoquan1*  

1 Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

2 Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

Corresponding author: XU X Q, E-mail: xiaoquanxu_1987@163.com

Conflicts of interest   None.

Received  2024-03-12
Accepted  2024-07-05
DOI: 10.12015/issn.1674-8034.2024.07.017
Cite this article as: PU X Y, HU H, LU J L, et al. Value of dynamic contrast-enhanced MRI in evaluating the microcirculation of extraocular muscle and stage of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imaging, 2024, 15(7): 99-104. DOI:10.12015/issn.1674-8034.2024.07.017.

[1]
DU B X, WANG Y J, YANG M, et al. Clinical features and clinical course of thyroid-associated ophthalmopathy: a case series of 3620 Chinese cases[J]. Eye, 2021, 35(8): 2294-2301. DOI: 10.1038/s41433-020-01246-7.
[2]
SONG C, LUO Y S, YU G F, et al. Current insights of applying MRI in Graves' ophthalmopathy[J/OL]. Front Endocrinol, 2022, 13: 991588 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/36267571/. DOI: 10.3389/fendo.2022.991588.
[3]
Oculoplastic and Orbital Disease Group of Chinese Ophthalmological Society of Chin-ese Medical Association, Thyroid Group of Chinese Society of Endocrinology of Chin-ese Medical Association. Chinese guideline on the diagnosis and treatment of thyroid-associated ophthalmopathy (2022)[J]. Chin J Ophthalmol, 2022, 58(9): 646-668. DOI: 10.3760/cma.j.cn112142-20220421-00201.
[4]
YI C Y, NIU G, ZHANG Y H, et al. Advances in artificial intelligence in thyroid-associated ophthalmopathy[J/OL]. Front Endocrinol, 2024, 15: 1356055 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/38715793/. DOI: 10.3389/fendo.2024.1356055.
[5]
BARTALENA L, TANDA M L. Current concepts regarding Graves' orbitopathy[J]. J Intern Med, 2022, 292(5): 692-716. DOI: 10.1111/joim.13524.
[6]
HOANG T D, STOCKER D J, CHOU E L, et al. 2022Update on clinical management of Graves disease and thyroid eye disease[J]. Endocrinol Metab Clin North Am, 2022, 51(2): 287-304. DOI: 10.1016/j.ecl.2021.12.004.
[7]
BURCH H B, PERROS P, BEDNARCZUK T, et al. Management of thyroid eye disease: a consensus statement by the American thyroid association and the European thyroid association[J]. Thyroid, 2022, 32(12): 1439-1470. DOI: 10.1089/thy.2022.0251.
[8]
GE Q, ZHANG X H, WANG L, et al. Quantitative evaluation of activity of thyroid-associated Ophthalmopathy using short-tau inversion recovery (STIR) sequence[J/OL]. BMC Endocr Disord, 2021, 21(1): 226 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/34774035/. DOI: 10.1186/s12902-021-00895-3.
[9]
CHEN W, HU H, XU X Q, et al. Clinical value of RESOLVE-DWI in the diagnosis and staging of thyroid-associated ophthalmopathy[J]. J Pract Radiol, 2019, 35(7): 1050-1053. DOI: 10.3969/j.issn.1002-1671.2019.07.006.
[10]
MA R Q, GENG Y, GAN L, et al. Quantitative T1 mapping MRI for the assessment of extraocular muscle fibrosis in thyroid-associated ophthalmopathy[J]. Endocrine, 2022, 75(2): 456-464. DOI: 10.1007/s12020-021-02873-0.
[11]
ZHU H Z, ZOU M S, WU D D, et al. Quantitative assessment of extraocular muscles in Graves' ophthalmopathy using T1 mapping[J]. Eur Radiol, 2023, 33(12): 9074-9083. DOI: 10.1007/s00330-023-09931-3.
[12]
WEI M X, BO F, CAO H, et al. Diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging for malignant ovarian tumors: a systematic review and meta-analysis[J]. Acta Radiol, 2021, 62(7): 966-978. DOI: 10.1177/0284185120944916.
[13]
DU Y H, ZHANG S, LIANG T, et al. Dynamic contrast-enhanced MRI perfusion parameters are imaging biomarkers for angiogenesis in lung cancer[J]. Acta Radiol, 2023, 64(2): 572-580. DOI: 10.1177/02841851221088581.
[14]
LINDGREN A, ANTTILA M, ARPONEN O, et al. Dynamic contrast-enhanced MRI to characterize angiogenesis in primary epithelial ovarian cancer: an exploratory study[J/OL]. Eur J Radiol, 2023, 165: 110925 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/37320880/. DOI: 10.1016/j.ejrad.2023.110925.
[15]
YUAN P X, GAO Y, WU Q, et al. The value of DCE and MAP-MRI in predicting the methylation status of MGMT promoter in high-grade glioma[J]. Chin J Magn Reson Imag, 2023, 14(5): 85-91. DOI: 10.12015/issn.1674-8034.2023.05.016.
[16]
LEE S, CHOI Y H, CHO Y J, et al. Quantitative evaluation of Crohn's disease using dynamic contrast-enhanced MRI in children and young adults[J]. Eur Radiol, 2020, 30(6): 3168-3177. DOI: 10.1007/s00330-020-06684-1.
[17]
MAIJER K I, VAN DER LEIJ C, DE HAIR M J, et al. Dynamic contrast-enhanced magnetic resonance imaging using pharmacokinetic modeling: initial experience in patients with early arthritis[J]. Arthritis Rheumatol, 2016, 68(3): 587-596. DOI: 10.1002/art.39469.
[18]
JIANG H, WANG Z C, XIAN J F, et al. Evaluation of rectus extraocular muscles using dynamic contrast-enhanced MR imaging in patients with Graves' ophthalmopathy for assessment of disease activity[J]. Acta Radiol, 2012, 53(1): 87-94. DOI: 10.1258/ar.2011.110431.
[19]
WU T, TANG D R, WANG F, et al. The value of DCE-MRI in assessing the course of thyroid associated ophthalmopathy[J]. Chin J Ophthalmol, 2017, 53(6): 430-435. DOI: 10.3760/cma.j.issn.0412-4081.2017.06.007.
[20]
HUO L, YAN S, WANG J, et al. The value of quantitative dynamic-enhanced MRI in evaluating extra-ocular muscle involvement in patients with chronic thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imag, 2014, 5(1): 30-34. DOI: 10.3969/j.issn.1674-8034.2014.01.007.
[21]
LIU H, ZHANG F X, ZHANG F. Research status of DCE-MRI semi-quantitative and quantitative analysis in distinguishing benign and malignant cervical lymph nodes[J]. Chin J Magn Reson Imag, 2021, 12(1): 103-105. DOI: 10.12015/issn.1674-8034.2021.01.024.
[22]
LU G M. Application and progress of dynamic contrast-enhanced MRI[J]. Chin J Radiol, 2015, 49(6): 406-409. DOI: 10.3760/cma.j.issn.1005-1201.2015.06.003.
[23]
WU D D, ZHU H Z, HONG S B, et al. Utility of multi-parametric quantitative magnetic resonance imaging of the lacrimal gland for diagnosing and staging Graves' ophthalmopathy[J/OL]. Eur J Radiol, 2021, 141: 109815 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/34130234/. DOI: 10.1016/j.ejrad.2021.109815.
[24]
KEIL V C, MÄDLER B, GIESEKE J, et al. Effects of arterial input function selection on kinetic parameters in brain dynamic contrast-enhanced MRI[J/OL]. Magn Reson Imaging, 2017, 40: 83-90 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/28438713/. DOI: 10.1016/j.mri.2017.04.006.
[25]
NIU W, LUO Y H, YU T, et al. The value of tumor hemodynamics and morphological features in predicting the postoperative recurrence time of breast cancer based on dynamic contrast-enhanced MRI[J]. Chin J Radiol, 2020, 54(3): 209-214. DOI: 10.3760/cma.j.issn.1005-1201.2020.03.007.
[26]
BABA A, KUROKAWA R, KUROKAWA M, et al. Dynamic contrast-enhanced MRI parameters and normalized ADC values could aid differentiation of skull base osteomyelitis from nasopharyngeal cancer[J]. AJNR Am J Neuroradiol, 2023, 44(1): 74-78. DOI: 10.3174/ajnr.A7740.
[27]
JIANG P P, CHEN Y Q, HUANG T, et al. Comparative study of breast magnetic resonance T2WI sequence image quality based on two Dixon techniques[J]. Chin J Magn Reson Imag, 2024, 15(3): 158-162. DOI: 10.12015/issn.1674-8034.2024.03.025.
[28]
LIU X T, SU Y, JIANG M D, et al. Application of magnetic resonance imaging in the evaluation of disease activity in Graves' ophthalmopathy[J]. Endocr Pract, 2021, 27(3): 198-205. DOI: 10.1016/j.eprac.2020.09.008.
[29]
CHEN H H, HU H, CHEN W, et al. Thyroid-associated orbitopathy: evaluating microstructural changes of extraocular muscles and optic nerves using readout-segmented echo-planar imaging-based diffusion tensor imaging[J]. Korean J Radiol, 2020, 21(3): 332-340. DOI: 10.3348/kjr.2019.0053.
[30]
CHEN B B, HSU C Y, YU C W, et al. Hepatic necro-inflammation and elevated liver enzymes: evaluation with MRI perfusion imaging with gadoxetic acid in chronic hepatitis patients[J]. Clin Radiol, 2014, 69(5): 473-480. DOI: 10.1016/j.crad.2013.12.003.
[31]
POLITI L S, GODI C, CAMMARATA G, et al. Magnetic resonance imaging with diffusion-weighted imaging in the evaluation of thyroid-associated orbitopathy: getting below the tip of the iceberg[J]. Eur Radiol, 2014, 24(5): 1118-1126. DOI: 10.1007/s00330-014-3103-3.
[32]
ZENG Y N, ZHANG B T, SONG T, et al. The clinical value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) semi-quantitative parameters in monitoring neoadjuvant chemotherapy response of osteosarcoma[J]. Acta Radiol, 2022, 63(8): 1077-1085. DOI: 10.1177/02841851211030768.
[33]
LIU S H, SHAO S, WEI K J, et al. Diagnostic value of DCE-MRI combined with DKI in predicting the triple negative breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(5): 110-115. DOI: 10.12015/issn.1674-8034.2023.05.020.
[34]
YUAN J, LIU K, ZHANG Y, et al. Quantitative dynamic contrast-enhance MRI parameters for rectal carcinoma characterization: correlation with tumor tissue composition[J/OL]. World J Surg Oncol, 2023, 21(1): 306 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/37749564/. DOI: 10.1186/s12957-023-03193-5.
[35]
LI S, SHAO S,YAN X F et al. The diagnostic value of 3.0 T DCE-MRI combined with DWI in differentiating pleomorphic adenoma and basal cell adenoma of salivary gland[J]. Chin J Magn Reson Imaging, 2023, 14(4): 34-40. DOI: 10.12015/issn.1674-8034.2023.04.007.
[36]
LI J, HUANG B S, WEI M, et al. Application of DCE-MRI combined with apparent diffusion coefficient in prostate cancer[J]. J Pract Radiol, 2020, 36(12): 1976-1979. DOI: 10.3969/j.issn.1002-1671.2020.12.023.
[37]
YI Z L, XIE M W, SHI G Z, et al. Assessment of quantitative dynamic contrast-enhanced MRI in distinguishing different histologic grades of breast phyllode tumor[J]. Eur Radiol, 2022, 32(3): 1601-1610. DOI: 10.1007/s00330-021-08232-x.
[38]
LI Z F, LUO Y S, FENG X T, et al. Application of multiparameter quantitative magnetic resonance imaging in the evaluation of Graves' ophthalmopathy[J]. J Magn Reson Imaging, 2023, 58(4): 1279-1289. DOI: 10.1002/jmri.28642.

PREV Diffusion kurtosis imaging of brain white matter alteration in patients with acute mild traumatic brain injury based on the TBSS method
NEXT Application value of IVIM, DKI and DCE-MRI radiomics predicting HER-2 expression in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn