Share:
Share this content in WeChat
X
Clinical Article
Value of synthetic MRI and conventional MRI in identifying triple negative and non-triple negative breast cancer
WANG Lanmei  ZHOU Zhipeng  XU Lieyin  LIN Bin  YU Xueyan  WANG Lingting 

Cite this article as: WANG L M, ZHOU Z P, XU L Y, et al. Value of synthetic MRI and conventional MRI in identifying triple negative and non-triple negative breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(7): 112-117. DOI:10.12015/issn.1674-8034.2024.07.019.


[Abstract] Objective To explore the value of synthetic MRI (syMRI) and conventional MRI in identifying triple negative breast cancer (TNBC) and nonTNBC.Materials and Methods This retrospective study included 167 patients with pathologically proven breast cancer. There were 30 cases in the TNBC group and 137 cases in the nonTNBC group. All patients underwent syMRI examinations. The following parameters were measured and evaluated: fibroglandular tissue, background parenchymal enhancement, lesion shape, edge, diameter, T2WI signal, apparent diffusion coefficient (ADC), patterns of enhancement, time-signal intensity curve, syMRI parameters (T1pre, T2pre, PDpre, T1Gd, T2Gd, PDGd). Univariate and multivariate analysis were used to compare the parameters of TNBC group and nonTNBC group and three predictive models were established: syMRI model, conventional MRI model and Joint model (syMRI+ conventional MRI). Receiver operator characteristic curve and area under the curve (AUC) were used to analyze the efficiency of each predictive model in distinguishing TNBC and non-TNBC. Then the DeLong test was used to compare the differences in AUC.Results There were statistically significant differences (P<0.05) in T2WI, ADC, rim enhancement, T1pre, T2pre, T1Gd, T2Gd, ΔT2, ΔPD, rT2, ΔT2% and ΔPD% between TNBC group and non TNBC group. Multivariate analyses showed that ADC, the presence of rim enhancement, T2pre, T1Gd and T2Gd were independent predictors for diagnosis of TNBC (P<0.05). Joint model had the highest diagnostic performance with an AUC of 0.932.Conclusions The prediction model established based on syMRI and conventional MRI have value in identifying TNBC and nonTNBC.
[Keywords] triple-negative breast cancer;non-triple-negative breast carcinoma;magnetic resonance imaging;synthetic magnetic resonance imaging;conventional magnetic resonance imaging

WANG Lanmei   ZHOU Zhipeng*   XU Lieyin   LIN Bin   YU Xueyan   WANG Lingting  

Department of Radiology, Affiliated Hospital of Guilin Medical College, Guilin 541001, China

Corresponding author: ZHOU Z P, E-mail: bigbird_zhou@hotmail.com

Conflicts of interest   None.

Received  2024-02-27
Accepted  2024-06-25
DOI: 10.12015/issn.1674-8034.2024.07.019
Cite this article as: WANG L M, ZHOU Z P, XU L Y, et al. Value of synthetic MRI and conventional MRI in identifying triple negative and non-triple negative breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(7): 112-117. DOI:10.12015/issn.1674-8034.2024.07.019.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
WAKS A G, WINER E P. Breast cancer treatment: a review[J]. JAMA, 2019, 321(3): 288-300. DOI: 10.1001/jama.2018.19323.
[3]
Breast Cancer Professional Committee of Chinese Anti-Cancer Association, Breast Oncology Group of Chinese Medical Association Oncology Branch. Guidelines for breast cancer diagnosis and treatment by China Anti-cancer Association(2024 edition)[J]. China Oncol, 2023, 33(12): 1092-1187. DOI: 10.19401/j.cnki.1007-3639.2023.12.004.
[4]
LI F Z, LI Q, ZHENG Z L, et al. Research progress of clinical application of synthetic MRI[J]. Radiol Pract, 2022, 37(3): 402-406. DOI: 10.13609/j.cnki.1000-0313.2022.03.022.
[5]
JI S, YANG D J, LEE J, et al. Synthetic MRI: technologies and applications in neuroradiology[J]. J Magn Reson Imaging, 2022, 55(4): 1013-1025. DOI: 10.1002/jmri.27440.
[6]
HWANG K P, FUJITA S. Synthetic MR: physical principles, clinical implementation, and new developments[J]. Med Phys, 2022, 49(7): 4861-4874. DOI: 10.1002/mp.15686.
[7]
LIU J R, XU M Y, REN J L, et al. Synthetic MRI, multiplexed sensitivity encoding, and BI-RADS for benign and malignant breast cancer discrimination[J/OL]. Front Oncol, 2022, 12: 1080580 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/36818669/. DOI: 10.3389/fonc.2022.1080580.
[8]
LI X J, FAN Z C, JIANG H N, et al. Synthetic MRI in breast cancer: differentiating benign from malignant lesions and predicting immunohistochemical expression status[J/OL]. Sci Rep, 2023, 13(1): 17978 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/37864025/. DOI: 10.1038/s41598-023-45079-2.
[9]
HE H, SONG M N, TIAN Z R, et al. Multiparametric MRI model with synthetic MRI, DWI multi-quantitative parameters, and differential sub-sampling with Cartesian ordering enables BI-RADS 4 lesions diagnosis with high accuracy[J/OL]. Front Oncol, 2023, 13: 1180131 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/38250550/. DOI: 10.3389/fonc.2023.1180131.
[10]
YU X Y, ZHOU Z P, TONG Q Y, et al. Application value of synthetic MRI in the differential diagnosis of denign and malignant breast lesions and prognosis lymph node metastasis of breast cancer[J]. J Clin Radiol, 2023, 42(2): 244-251. DOI: 10.13437/j.cnki.jcr.2023.02.014.
[11]
DU S Y, GAO S, ZHANG L N, et al. Improved discrimination of molecular subtypes in invasive breast cancer: comparison of multiple quantitative parameters from breast MRI[J/OL]. Magn Reson Imaging, 2021, 77: 148-158 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/33309922/. DOI: 10.1016/j.mri.2020.12.001.
[12]
ZHANG Q, ZHAO Y, NIE J, et al. Pretreatment synthetic MRI features for triple-negative breast cancer[J/OL]. Clin Radiol, 2024, 79(2): e219-e226 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/37935611/. DOI: 10.1016/j.crad.2023.10.015.
[13]
KAZAMA T, TAKAHARA T, KWEE T C, et al. Quantitative values from synthetic MRI correlate with breast cancer subtypes[J/OL]. Life, 2022, 12(9): 1307 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/36143344/. DOI: 10.3390/life12091307.
[14]
ZHAO R M, DU S Y, GUO L C, et al. The value of synthetic MRI in identifying different molecular types of breast cancer and triple negative and non triple negative breast cancer[J]. Chin J Radiol, 2022, 56(6): 636-642. DOI: 10.3760/cma.j.cn112149-20210721-00503.
[15]
GAO W B, YANG Q X, LI X H, et al. Synthetic MRI with quantitative mappings for identifying receptor status, proliferation rate, and molecular subtypes of breast cancer[J/OL]. Eur J Radiol, 2022, 148: 110168 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/35078137/. DOI: 10.1016/j.ejrad.2022.110168.
[16]
MATSUDA M, TSUDA T, EBIHARA R, et al. Triple-negative breast cancer on contrast-enhanced MRI and synthetic MRI: a comparison with non-triple-negative breast carcinoma[J/OL]. Eur J Radiol, 2021, 142: 109838 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/34217136/. DOI: 10.1016/j.ejrad.2021.109838.
[17]
BALTZER P, MANN R M, IIMA M, et al. Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group[J]. Eur Radiol, 2020, 30(3): 1436-1450. DOI: 10.1007/s00330-019-06510-3.
[18]
MATSUDA M, KIDO T, TSUDA T, et al. Utility of synthetic MRI in predicting the Ki-67 status of oestrogen receptor-positive breast cancer: a feasibility study[J/OL]. Clin Radiol, 2020, 75(5): 398.e1-398398.e8 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/32019671/. DOI: 10.1016/j.crad.2019.12.021.
[19]
CHEN Y, PANDA A, PAHWA S, et al. Three-dimensional MR fingerprinting for quantitative breast imaging[J]. Radiology, 2019, 290(1): 33-40. DOI: 10.1148/radiol.2018180836.
[20]
LINDERHOLM B K, HELLBORG H, JOHANSSON U, et al. Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer[J]. Ann Oncol, 2009, 20(10): 1639-1646. DOI: 10.1093/annonc/mdp062.
[21]
DERAKHSHAN F, REIS-FILHO J S. Pathogenesis of triple-negative breast cancer[J/OL]. Annu Rev Pathol, 2022, 17: 181-204 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/35073169/. DOI: 10.1146/annurev-pathol-042420-093238.
[22]
DING J H, XIAO Y, ZHAO S, et al. Integrated analysis reveals the molecular features of fibrosis in triple-negative breast cancer[J/OL]. Mol Ther Oncolytics, 2022, 24: 624-635 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/35284626/. DOI: 10.1016/j.omto.2022.02.003.
[23]
WANG S, LI J H, ZHU D R, et al. Contrast-enhanced magnetic resonance (MR) T1 mapping with low-dose gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) is promising in identifying clear cell renal cell carcinoma histopathological grade and differentiating fat-poor angiomyolipoma[J]. Quant Imaging Med Surg, 2020, 10(5): 988-998. DOI: 10.21037/qims-19-723.
[24]
Breast Cancer expert Committee of Chinese Clinical Oncology Society, Breast Cancer Professional Committee of China Anti-Cancer Association, Breast surgery Group of Chinese Medical Association surgery Association. Expert consensus on the diagnosis and treatment of young breast cancer in China (2022 Edition)[J]. Natl Med J China, 2023, 103(6): 387-403. DOI: 10.3760/cma.j.cn112137-20220907-01895.
[25]
ZHAN D, HUANG Y F, LI P, et al. A comparative study on diagnostic value of multimodal MRI between triple negative breast cancer and non-triple negative breast cancer[J]. J Pract Radiol, 2021, 37(9): 1455-1458. DOI: 10.3969/j.issn.1002-1671.2021.09.013.
[26]
MUMIN N A, RAMLI HAMID M T, WONG J H D, et al. Magnetic resonance imaging phenotypes of breast cancer molecular subtypes: a systematic review[J/OL]. Acad Radiol, 2022, 29(Suppl 1): S89-S106 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/34481705/. DOI: 10.1016/j.acra.2021.07.017.
[27]
SZEP M, PINTICAN R, BIANCA B C, et al. Multiparametric MRI features of breast cancer molecular subtypes[J]. Medicina, 2022, 58(12): 1716. DOI: 10.3390/medicina58121716.
[28]
ZHENG X, LI Y C, PENG R C. The value of muti-parametric MRI in different molecular subtypes of primary breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(5): 104-109. DOI: 10.12015/issn.1674-8034.2023.05.019.
[29]
YUEN S, MONZAWA S, YANAI S, et al. The association between MRI findings and breast cancer subtypes: focused on the combination patterns on diffusion-weighted and T2-weighted images[J]. Breast Cancer, 2020, 27(5): 1029-1037. DOI: 10.1007/s12282-020-01105-z.
[30]
KIM J J, KIM J Y, SUH H B, et al. Characterization of breast cancer subtypes based on quantitative assessment of intratumoral heterogeneity using dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging[J]. Eur Radiol, 2022, 32(2): 822-833. DOI: 10.1007/s00330-021-08166-4.
[31]
UEMATSU T, KASAMI M, YUEN S. Triple-negative breast cancer: correlation between MR imaging and pathologic findings[J]. Radiology, 2009, 250(3): 638-647. DOI: 10.1148/radiol.2503081054.
[32]
MATSUBAYASHI R, MATSUO Y, EDAKUNI G, et al. Breast masses with peripheral rim enhancement on dynamic contrast-enhanced MR images: correlation of MR findings with histologic features and expression of growth factors[J]. Radiology, 2000, 217(3): 841-848. DOI: 10.1148/radiology.217.3.r00dc07841.
[33]
YUAN C R, JIN F, GUO X L, et al. Correlation analysis of breast cancer DWI combined with DCE-MRI imaging features with molecular subtypes and prognostic factors[J/OL]. J Med Syst, 2019, 43(4): 83 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/30810823/. DOI: 10.1007/s10916-019-1197-5.
[34]
COSTANTINI M, BELLI P, RINALDI P, et al. Diffusion-weighted imaging in breast cancer: relationship between apparent diffusion coefficient and tumour aggressiveness[J]. Clin Radiol, 2010, 65(12): 1005-1012. DOI: 10.1016/j.crad.2010.07.008.
[35]
YOUK J H, SON E J, CHUNG J, et al. Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes[J]. Eur Radiol, 2012, 22(8): 1724-1734. DOI: 10.1007/s00330-012-2425-2.

PREV Application value of IVIM, DKI and DCE-MRI radiomics predicting HER-2 expression in breast cancer
NEXT Study on the value of combining intravoxel incoherent motion with apparent diffusion coefficient in the diagnosis of prostate cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn