Share:
Share this content in WeChat
X
Clinical Article
Study on the value of combining intravoxel incoherent motion with apparent diffusion coefficient in the diagnosis of prostate cancer
CHEN Zhaoting  ZOU Yujian  YUAN Zhuobin  WANG Chaoyang  HUANG Xiaolan  ZHANG Kunlin  CHEN Youjun  LIANG Guifeng 

Cite this article as: CHEN Z T, ZOU Y J, YUAN Z B, et al. Study on the value of combining intravoxel incoherent motion with apparent diffusion coefficient in the diagnosis of prostate cancer[J]. Chin J Magn Reson Imaging, 2024, 15(7): 118-123, 142. DOI:10.12015/issn.1674-8034.2024.07.020.


[Abstract] Objective To explore the diagnostic value of combining quantitative parameters of intravoxel incoherent motion (IVIM) with apparent diffusion coefficient (ADC) for prostate cancer (PCa).Materials and Methods Seventy-four cases underwent multiparametric magnetic resonance (mpMRI) prostate examination, including 41 cases of PCa (28 cases in the peripheral zone, 13 cases in the transitional zone) and 33 cases of benign prostatic hyperplasia (BPH). Quantitative parameters including true diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), and ADC value were obtained by using a bi-exponential model fitting algorithm. The differences in D value, D* value, f value and ADC value were compared between PCa and prostate hyperplastic nodule with hypointense and hyperintense in T2WI. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic efficacy of combining IVIM quantitative parameters with ADC for PCa. The correlation of each quantitative parameter of IVIM and ADC with the Gleason score was analyzed.Results The ADC, D, and f values of PCa were significantly lower than those of hyperplastic nodule with hypointense and hyperintense in T2WI, with statistically significant differences (P<0.05). D value had the largest area under the curve (AUC) and the highest specificity in distinguishing PCa from prostate hyperplastic nodule with hypointense in T2WI, with statistically significant differences (P<0.05). The combination of ADC, D and f values significantly increased the AUC and sensitivity between PCa and hyperplastic nodule with hypointense in T2WI (0.948, 90.24% respectively). ADC value showed very high AUC, sensitivity and specificity for distinguishing PCa from prostate hyperplastic nodule with hyperintense in T2WI (0.997, 97.65%, 100.00% respectively). There was no significant correlation between ADC value, each quantitative parameter of IVIM and the Gleason score (P=0.068, 0.455, 0.822, 0.297).Conclusions The quantitative parameters of IVIM combined with ADC can obviously improve the differential diagnostic efficacy for PCa and BPH.
[Keywords] prostate cancer;prostate hyperplasia;magnetic resonance imaging;intravoxel incoherent motion;apparent diffusion coefficient;differential diagnosis

CHEN Zhaoting1   ZOU Yujian1*   YUAN Zhuobin1   WANG Chaoyang1   HUANG Xiaolan1   ZHANG Kunlin1   CHEN Youjun2   LIANG Guifeng2  

1 Department of Radiology, the Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China

2 Department of Urology, the Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China

Corresponding author: ZOU Y J, E-mail: zouyujian@sohu.com

Conflicts of interest   None.

Received  2024-03-15
Accepted  2024-06-11
DOI: 10.12015/issn.1674-8034.2024.07.020
Cite this article as: CHEN Z T, ZOU Y J, YUAN Z B, et al. Study on the value of combining intravoxel incoherent motion with apparent diffusion coefficient in the diagnosis of prostate cancer[J]. Chin J Magn Reson Imaging, 2024, 15(7): 118-123, 142. DOI:10.12015/issn.1674-8034.2024.07.020.

[1]
BERGENGREN O, PEKALA K R, MATSOUKAS K, et al. 2022 update on prostate cancer epidemiology and risk factors-a systematic review[J]. Eur Urol, 2023, 84(2): 191-206. DOI: 10.1016/j.eururo.2023.04.021.
[2]
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30. DOI: 10.3322/caac.21332.
[3]
ZHANG Y, LI W K, ZHANG Z, et al. Differential diagnosis of prostate cancer and benign prostatic hyperplasia based on DCE-MRI using bi-directional CLSTM deep learning and radiomics[J]. Med Biol Eng Comput, 2023, 61(3): 757-771. DOI: 10.1007/s11517-022-02759-x.
[4]
KACHURI L, HOFFMANN T J, JIANG Y, et al. Genetically adjusted PSA levels for prostate cancer screening[J]. Nat Med, 2023, 29: 1412-1423. DOI: 10.1038/s41591-023-02277-9.
[5]
TAMADA T, UEDA Y, UENO Y, et al. Diffusion-weighted imaging in prostate cancer[J]. Magn Reson Mater Phys Biol Med, 2022, 35(4): 533-547. DOI: 10.1007/s10334-021-00957-6.
[6]
FÜTTERER J J, TEMPANY C. Prostate MRI and image quality: the radiologist's perspective[J/OL]. Eur J Radiol, 2023, 165: 110930 [2024-01-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466385. DOI: 10.1016/j.ejrad.2023.110930.
[7]
HAN S Y, LI C M, CUI Y D, et al. Intra-voxel incoherent motion diffusion weighted imaging on diagnosis of prostate cancer using whole mount section as A reference standard: a clinical study[J]. Chin J Med Imag, 2021, 29(4): 379-384. DOI: 10.3969/j.issn.1005-5185.2021.04.023.
[8]
RICHES S F, HAWTIN K, CHARLES-EDWARDS E M, et al. Diffusion-weighted imaging of the prostate and rectal wall: comparison of biexponential and monoexponential modelled diffusion and associated perfusion coefficients[J]. NMR Biomed, 2009, 22(3): 318-325. DOI: 10.1002/nbm.1328.
[9]
CUI Y D, LI C M, LIU Y, et al. Differentiation of prostate cancer and benign prostatic hyperplasia: comparisons of the histogram analysis of intravoxel incoherent motion and monoexponential model with in-bore MR-guided biopsy as pathological reference[J]. Abdom Radiol, 2020, 45(10): 3265-3277. DOI: 10.1007/s00261-019-02227-5.
[10]
FEYISETAN O, EZENWA V, RAMADHAN M, et al. The predictive value of prostate-specific antigen density: a retrospective analysis of likert 3 multiparametric MRI of the prostate[J/OL]. Cureus, 2023, 15(9): e45782 [2024-01-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590620. DOI: 10.7759/cureus.45782.
[11]
WEGELIN O, EXTERKATE L, VAN DER LEEST M, et al. Complications and adverse events of three magnetic resonance imaging-based target biopsy techniques in the diagnosis of prostate cancer among men with prior negative biopsies: results from the FUTURE trial, a multicentre randomised controlled trial[J]. Eur Urol Oncol, 2019, 2(6): 617-624. DOI: 10.1016/j.euo.2019.08.007.
[12]
KIM E H, ANDRIOLE G L. Should men undergo MRI before prostate biopsy - CON[J]. Urol Oncol, 2023, 41(2): 92-95. DOI: 10.1016/j.urolonc.2021.08.006.
[13]
ISRAËL B, HANNINK G, BARENTSZ J O, et al. Implications of the European association of urology recommended risk assessment algorithm for early prostate cancer detection[J/OL]. Eur Urol Open Sci, 2022, 43: 1-4 [2024-01-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278493. DOI: 10.1016/j.euros.2022.06.006.
[14]
SHINMOTO H, TAMURA C, SOGA S, et al. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer[J]. AJR Am J Roentgenol, 2012, 199(4): W496-W500. DOI: 10.2214/AJR.11.8347.
[15]
LIU Y, WANG X, CUI Y D, et al. Comparative study of monoexponential, intravoxel incoherent motion, kurtosis, and IVIM-kurtosis models for the diagnosis and aggressiveness assessment of prostate cancer[J/OL]. Front Oncol, 2020, 10: 1763 [2024-01-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518290. DOI: 10.3389/fonc.2020.01763.
[16]
GUO D B, ZENG G F, YANG H, et al. Intravoxel incoherent motion diffusion-weighted imaging for assessment of the differential diagnosis and Gleason grade in prostate cancer: a Meta-analysis[J]. Chin J Magn Reson Imag, 2022, 13(2): 69-74. DOI: 10.12015/issn.1674-8034.2022.02.014.
[17]
FANG L, FANG H, JIN L, et al. The value of apparent diffusion coefficient minimum in differential diagnosis of early prostate cancer and chronic prostatitis in peripheral zone[J]. Chin J Magn Reson Imag, 2023, 14(7): 93-97. DOI: 10.12015/issn.1674-8034.2023.07.016.
[18]
LI C M, CHEN M, WAN B, et al. A comparative study of Gaussian and non-Gaussian diffusion models for differential diagnosis of prostate cancer with in-bore transrectal MR-guided biopsy as a pathological reference[J]. Acta Radiol, 2018, 59(11): 1395-1402. DOI: 10.1177/0284185118760961.
[19]
SONG M, CHEN S, ZHOU X B. Correlation between diffusion coefficient, perfusion factor and pathological diagnosis of prostate in IVIM-MRI[J]. Chin J Gerontol, 2019, 39(11): 2645-2648. DOI: 10.3969/j.issn.1005-9202.2019.11.025.
[20]
BEYHAN M, SADE R, KOC E, et al. The evaluation of prostate lesions with IVIM DWI and MR perfusion parameters at 3T MRI[J]. Radiol Med, 2019, 124(2): 87-93. DOI: 10.1007/s11547-018-0930-3.
[21]
YAO W G, LIU J, ZHENG J J, et al. Study on diagnostic value of quantitative parameters of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in prostate cancer[J]. Am J Transl Res, 2021, 13(4): 3696-3702.
[22]
DÖPFERT J, LEMKE A, WEIDNER A, et al. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging[J]. Magn Reson Imaging, 2011, 29(8): 1053-1058. DOI: 10.1016/j.mri.2011.06.001.
[23]
PANG Y X, TURKBEY B, BERNARDO M, et al. Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations[J]. Magn Reson Med, 2013, 69(2): 553-562. DOI: 10.1002/mrm.24277.
[24]
LENG X M, HAN X R, ZHAO M, et al. IVIM-DWI in the differential diagnosis of prostate cancer and prostate hyperplasia and its correlation with Gleason score[J]. Radiol Pract, 2016, 31(8): 760-763. DOI: 10.13609/j.cnki.1000-0313.2016.08.020.
[25]
KURU T H, ROETHKE M C, SEIDENADER J, et al. Critical evaluation of magnetic resonance imaging targeted, transrectal ultrasound guided transperineal fusion biopsy for detection of prostate cancer[J]. J Urol, 2013, 190(4): 1380-1386. DOI: 10.1016/j.juro.2013.04.043.
[26]
HE N, LI Z P, LI X, et al. Intravoxel incoherent motion diffusion-weighted imaging used to detect prostate cancer and stratify tumor grade: a meta-analysis[J/OL]. Front Oncol, 2020, 10: 1623 [2024-02-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518084. DOI: 10.3389/fonc.2020.01623.
[27]
ZHAO Y Y, ZHANG D, SONG N, et al. Diagnostic value of ultra-high b-value DWI in peripheral prostate cancer[J]. Chin J Magn Reson Imag, 2021, 12(12): 24-28. DOI: 10.12015/issn.1674-8034.2021.12.005.
[28]
REN H P, FAN Q, WANG X H, et al. The advantage of advanced diffusion-weighted imaging compared with single index DWI in differentiating transitional zone prostate cancer and benign prostatic hyperplasia[J]. Chin J Magn Reson Imag, 2020, 11(7): 552-556. DOI: 10.12015/issn.1674-8034.2020.07.015.
[29]
PESAPANE F, PATELLA F, FUMAROLA E M, et al. Intravoxel incoherent motion (IVIM)diffusion weighted imaging (DWI) in the periferic prostate cancer detection and stratification[J/OL]. Med Oncol, 2017, 34(3): 35 [2024-02-05]. https://link.springer.com/article/10.1007/s12032-017-0892-7. DOI: 10.1007/s12032-017-0892-7.
[30]
DI RENZI P, CONIGLIO A, ABELLA A, et al. Volumetric histogram-based analysis of cardiac magnetic resonance T1 mapping: a tool to evaluate myocardial diffuse fibrosis[J]. Phys Med, 2021, 82: 185-191. DOI: 10.1016/j.ejmp.2021.01.080.
[31]
BROWN A L, JEONG J, WAHAB R A, et al. Diagnostic accuracy of MRI textural analysis in the classification of breast tumors[J]. Clin Imaging, 2021, 77: 86-91. DOI: 10.1016/j.clinimag.2021.02.031.
[32]
HAN L Y, HE G Y, MEI Y J, et al. Combining magnetic resonance diffusion-weighted imaging with prostate-specific antigen to differentiate between malignant and benign prostate lesions[J/OL]. Med Sci Monit, 2022, 28: e935307 [2024-02-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044910. DOI: 10.12659/MSM.935307.
[33]
LI X W, CHEN L H, WANG N, et al. Evaluation of the value of DWI combined with T2 mapping sequences to identify prostate cancer and benign prostatic hyperplasia[J]. Chin J Magn Reson Imag, 2024, 15(2): 97-102.
[34]
WANG L, MARGOLIS D J, CHEN M, et al. Quality in MR reporting of the prostate-improving acquisition, the role of AI and future perspectives[J]. Br J Radiol, 2022, 95(1131): 20210816 [2024-02-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978223. DOI: 10.1259/bjr.20210816.
[35]
BELUE M J, LAW Y M, MARKO J, et al. Deep learning-based interpretable AI for prostate T2W MRI quality evaluation[J]. Acad Radiol, 2024, 31(4): 1429-1437. DOI: 10.1016/j.acra.2023.09.030.

PREV Value of synthetic MRI and conventional MRI in identifying triple negative and non-triple negative breast cancer
NEXT Differentiation between peripheral zone prostate cancer and focal chronic prostatitis based on PI-RADS V2.1 assessment of quantitative DCE-MRI values
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn