Share:
Share this content in WeChat
X
Clinical Article
Differentiation between peripheral zone prostate cancer and focal chronic prostatitis based on PI-RADS V2.1 assessment of quantitative DCE-MRI values
CAI Erpeng  ZUO Zongye  TANG Kai  ZHANG Linjie  QIU Jun  GAO Jun  WANG Yan  QIN Haibo 

Cite this article as: CAI E P, ZUO Z Y, TANG K, et al. Differentiation between peripheral zone prostate cancer and focal chronic prostatitis based on PI-RADS V2.1 assessment of quantitative DCE-MRI values[J]. Chin J Magn Reson Imaging, 2024, 15(7): 124-129, 178. DOI:10.12015/issn.1674-8034.2024.07.021.


[Abstract] Objective To investigate the differential value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) quantitative values based on the Prostate Imaging Reporting and Data System (PI-RADS) version V2.1 between peripheral zone prostate cancer (PCa) and focal chronic prostatitis (CP).Materials and Methods We reviewed 57 patients with peripheral zone PCa (study group) and 21 patients with CP (control group) admitted to the Second Peoples Hospital of Wuhu between January 2022 and April 2023, and all patients underwent T2WI, diffusion weighted imaging (DWI), and DCE-MRI. The PI-RADS V2.1 scores, quantitative values of DCE-MRI scans, were compared between the two groups for the bi-parameter (bp)-MRI (T2WI+DWI) and multi-parameter (mp)-MRI (T2WI+DWI+DCE-MRI) scanning protocols. The diagnostic value of each diagnostic protocol for peripheral zone PCa was assessed using receiver operating characteristic (ROC) curves.Results The PI-RADS V2.1 scores of the bp-MRI and mp-MRI scan protocols in the study group were (4.12±0.88) and (4.31±0.70), respectively, which were higher than those of the control group (2.42±1.14) and (2.52±1.22), respectively (P<0.05). The volume transport constant (Ktrans) and rate constant (Kep) of DCE-MRI quantitative values in the study group were higher than those in the control group (P<0.001). There was no statistical difference between the two groups in terms of extravascular extracellular volume fraction (Ve) (P>0.05). ROC analysis showed that the AUC (95% CI) for bp-MRI, mp-MRI, Ktrans and Kep for the diagnosis of PCa in the peripheral zone were 0.780 (0.672-0.866), 0.857 (0.759-0.926), 0.734 (0.622-0.828) and 0.818 (0.716-0.896), respectively. The diagnostic efficacy of mp-MRI was slightly higher than that of bp-MRI (P<0.05), and the differences among the remaining items were not statistically significant (P>0.05). The ROC fitted diagnostic model using the logit(p) method showed no statistically significant differences in the diagnostic efficacy of Kep+Ktrans, mp-MRI+Ktrans and mp-MRI+Kep when compared to PCa in the peripheral zone (P>0.05). The diagnostic efficacy of Kep+Ktrans was not statistically significant when compared with bp-MRI, mp-MRI, Ktrans and Kep (P>0.05). The diagnostic efficacy of mp-MRI+Ktrans was higher than that of bp-MRI, mp-MRI, Kep and Ktrans, respectively (P<0.05). The diagnostic efficacy of mp-MRI+Kep was higher than that of bp-MRI and Ktrans, respectively (P<0.05).Conclusions Based on PI-RADS V2.1 mp-MRI, bp-MRI and DCE-MRI quantitative values of Ktrans and Kep, the differential diagnostic efficacy of peripheral PCa and CP is comparable, and the combination of the two quantitative parameters, or respectively with mp-MRI, can effectively improve the diagnostic efficacy and can provide more options for the diagnosis of patients with different clinical indications.
[Keywords] peripheral zone prostate cancer;focal chronic prostatitis;dynamic contrast-enhanced magnetic resonance imaging;magnetic resonance imaging;transit constant;rate constant

CAI Erpeng1   ZUO Zongye2   TANG Kai1   ZHANG Linjie1*   QIU Jun3   GAO Jun1   WANG Yan4   QIN Haibo5  

1 Department of Radiology, the Second Peoples Hospital of Wuhu, Wuhu 241001, China

2 Bengbu Medical University, Bengbu 233000, China

3 Department of Radiology, the First Affiliated Hospital of the University of Science and Technology of China, Hefei 230001, China

4 Department of Pathology, the Second Peoples Hospital of Wuhu, Wuhu 241001, China

5 Department of Urology, the Second Peoples Hospital of Wuhu, Wuhu 241000, China

Corresponding author: ZHANG L J, E-mail: 25976980@qq.com

Conflicts of interest   None.

Received  2024-03-11
Accepted  2024-06-26
DOI: 10.12015/issn.1674-8034.2024.07.021
Cite this article as: CAI E P, ZUO Z Y, TANG K, et al. Differentiation between peripheral zone prostate cancer and focal chronic prostatitis based on PI-RADS V2.1 assessment of quantitative DCE-MRI values[J]. Chin J Magn Reson Imaging, 2024, 15(7): 124-129, 178. DOI:10.12015/issn.1674-8034.2024.07.021.

[1]
LI X, ZENG X Y. Advances in epidemiology of prostate cancer in China[J]. Cancer Res Prev Treat, 2021, 48(1): 98-102. DOI: 10.3971/j.issn.1000-8578.2021.20.0370.
[2]
SCHAEFFER E M, SRINIVAS S, ADRA N, et al. Prostate cancer, version 4.2023, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2023, 21(10): 1067-1096. DOI: 10.6004/jnccn.2023.0050.
[3]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[4]
FANG L, CAO M H, FANG H, et al. A preliminary study of T2 FLAIR sequence in the differential diagnosis of prostatitis and prostate cancer[J]. Chin Comput Med Imag, 2022, 28(3): 281-285. DOI: 10.19627/j.cnki.cn31-1700/th.2022.03.013.
[5]
PINSKY P F, PARNES H. Screening for Prostate Cancer[J]. N Engl J Med, 2023, 388(15): 1405-1414. DOI: 10.1056/NEJMcp2209151.
[6]
SCHIEDA N, PURYSKO A S. Prostate cancer imaging[J]. Radiol Clin North Am, 2024, 62(1): xv-xvi. DOI: 10.1016/j.rcl.2023.07.004.
[7]
BARENTSZ J O, RICHENBERG J, CLEMENTS R, et al. ESUR prostate MR guidelines 2012[J]. Eur Radiol, 2012, 22(4): 746-757. DOI: 10.1007/s00330-011-2377-y.
[8]
WEINREB J C, BARENTSZ J O, CHOYKE P L, et al. PI-RADS prostate imaging - reporting and data system: 2015, version 2[J]. Eur Urol, 2016, 69(1): 16-40. DOI: 10.1016/j.eururo.2015.08.052.
[9]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system Version 2.1: 2019 update of prostate imaging reporting and data system Version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[10]
UYSAL A, KARAOSMANOĞLU A D, KARCAALTıNCABA M, et al. Prostatitis, the great mimicker of prostate cancer: can we differentiate them quantitatively with multiparametric MRI?[J]. AJR Am J Roentgenol, 2020, 215(5): 1104-1112. DOI: 10.2214/AJR.20.22843.
[11]
LO G C, MARGOLIS D J A. Prostate MRI with PI-RADS v2.1: initial detection and active surveillance[J]. Abdom Radiol (NY), 2020, 45(7): 2133-2142. DOI: 10.1007/s00261-019-02346-z.
[12]
AN J Y, FOWLER K J. Accurate prostate volumes from manual calculations-a comparison of PI-RADS v2 and v2.1 measurement techniques[J]. Acad Radiol, 2021, 28(11): 1557-1558. DOI: 10.1016/j.acra.2021.03.027.
[13]
SINGH D, KUMAR V, DAS C J, et al. Machine learning-based analysis of a semi-automated PI-RADS v2.1 scoring for prostate cancer[J/OL]. Front Oncol, 2022, 12: 961985 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/36505875. DOI: 10.3389/fonc.2022.961985.
[14]
WU W J, ZHANG L, CHEN F M, et al. Diagnostic efficiency of biparametric vs multiparametric MRI in prostate cancer[J]. J Pract Radiol, 2020, 36(7): 1090-1092, 1106. DOI: 10.3969/j.issn.1002-1671.2020.07.019.
[15]
XU L L, ZHANG G, SHI B, et al. Comparison of biparametric and multiparametric MRI in the diagnosis of prostate cancer[J/OL]. Cancer Imaging, 2019, 19(1): 90 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/31864408. DOI: 10.1186/s40644-019-0274-9.
[16]
SHAKUR A, HAMES K, O'SHEA A, et al. Prostatitis: imaging appearances and diagnostic considerations[J]. Clin Radiol, 2021, 76(6): 416-426. DOI: 10.1016/j.crad.2021.01.007.
[17]
MAHAJAN M, GUPTA V, GUPTA P, et al. Evaluation of clinically significant prostate cancer using biparametric magnetic resonance imaging: an evolving concept[J]. J Cancer Res Ther, 2022, 18(6): 1640-1645. DOI: 10.4103/jcrt.JCRT_1313_20.
[18]
PARK H, KIM S H, KIM J Y. Dynamic contrast-enhanced magnetic resonance imaging for risk stratification in patients with prostate cancer[J]. Quant Imaging Med Surg, 2022, 12(1): 742-751. DOI: 10.21037/qims-21-455.
[19]
BOSCHHEIDGEN M, SCHIMMÖLLER L, ARSOV C, et al. MRI grading for the prediction of prostate cancer aggressiveness[J]. Eur Radiol, 2022, 32(4): 2351-2359. DOI: 10.1007/s00330-021-08332-8.
[20]
KUBIHAL V, KUNDRA V, LANKA V, et al. Prospective evaluation of PI-RADS v2 and quantitative MRI for clinically significant prostate cancer detection in Indian men - East meets West[J]. Arab J Urol, 2022, 20(3): 126-136. DOI: 10.1080/2090598X.2022.2072141.
[21]
KIM H, THOMAS J V, NIX J W, et al. Portable perfusion phantom offers quantitative dynamic contrast-enhanced magnetic resonance imaging for accurate prostate cancer grade stratification: a pilot study[J]. Acad Radiol, 2021, 28(3): 405-413. DOI: 10.1016/j.acra.2020.02.027.
[22]
REYNOLDS H M, TADIMALLA S, WANG Y F, et al. Semi-quantitative and quantitative dynamic contrast-enhanced (DCE) MRI parameters as prostate cancer imaging biomarkers for biologically targeted radiation therapy[J/OL]. Cancer Imaging, 2022, 22(1): 71 [2024-06-16]. https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-022-00508-9#citeas. DOI: 10.1186/s40644-022-00508-9.
[23]
ZIAYEE F, MUELLER-LUTZ A, GROSS J, et al. Arterial input function for quantitative dynamic contrast-enhanced MRI to diagnose prostate cancer[J]. Diagn Interv Radiol, 2022, 28(2): 108-114. DOI: 10.5152/dir.2022.19512.
[24]
FAN X B, CHATTERJEE A, PITTMAN J M, et al. Effectiveness of dynamic contrast enhanced MRI with a split dose of gadoterate meglumine for detection of prostate cancer[J]. Acad Radiol, 2022, 29(6): 796-803. DOI: 10.1016/j.acra.2021.07.028.
[25]
LI Z P, ZHANG Y S, CUI F, et al. Correlation between three-dimensional histogram analysis of dynamic contrast-enhanced MRI and Gleason score in prostate cancer[J]. Chin J Geriatr, 2022, 41(3): 296-301. DOI: 10.3760/cma.j.issn.0254-9026.2022.03.011.
[26]
BAGHER-EBADIAN H, BROWN S L, GHASSEMI M M, et al. Dynamic contrast enhanced (DCE) MRI estimation of vascular parameters using knowledge-based adaptive models[J/OL]. Sci Rep, 2023, 13(1): 9672 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/37316579. DOI: 10.1038/s41598-023-36483-9.
[27]
YAO L, DING J, LI X Y, et al. Application of dynamic enhanced magnetic resonance imaging texture analysis combined with ADCs in predicting pelvic lymph metastasis of prostate cancer[J]. Arch Esp Urol, 2023, 76(6): 383-388. DOI: 10.56434/j.arch.esp.urol.20237606.46.
[28]
TAKAO S, USHIJIMA Y, MOTOMURA Y, et al. Radiology- and gene-based risk stratification in small renal cell carcinoma: a preliminary study[J/OL]. PLoS One, 2021, 16(9): e0256471 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/34492075. DOI: 10.1371/journal.pone.0256471.

PREV Study on the value of combining intravoxel incoherent motion with apparent diffusion coefficient in the diagnosis of prostate cancer
NEXT Diagnosis of lower extremity arterial disease based on multi-sequence magnetic resonance vessel wall imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn