Share:
Share this content in WeChat
X
Clinical Article
Study on the correlation between infrapatellar fat pad IDEAL-IQ and T2 mapping sequences and the severity of knee osteoarthritis
HAO Tianqi  ZHANG YUAN  WANG Guohua  HUANG Xiaoming  Yang Yaqing  ZHAO Hongfei 

Cite this article as: HAO T Q, ZHANG Y, WANG G H, et al. Study on the correlation between infrapatellar fat pad IDEAL-IQ and T2 mapping sequences and the severity of knee osteoarthritis[J]. Chin J Magn Reson Imaging, 2024, 15(7): 137-142. DOI:10.12015/issn.1674-8034.2024.07.023.


[Abstract] Objective: To investigate the relationship between the fat fraction (FF) and T2 values of the infrapatellar fat pad (IPFP) and the severity of knee osteoarthritis (KOA) in patients.Materials and Methods Prospective recruitment included 99 participants (34 males, 65 females) who underwent knee joint X-ray and MRI on the same day. Participants were categorized into three groups based on knee joint X-ray Kellgren-Lawrence grading (KLG): no KOA group (KLG 0-1), mild KOA group (KLG 2), and severe KOA group (KLG 3-4). The FF and T2 values of the IPFP were measured using 3.0 T MR iteraterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation (IDEAL-IQ) and T2 mapping techniques, and employed Pearson or Spearman correlation analysis to examine the relationship between FF values, T2 values, and the severity of KOA. The diagnostic performance of FF and T2 values for KOA was evaluated using receiver operating characteristic (ROC) curves.Results As the severity of KOA progressed, the FF of the IPFP decreased correspondingly, and the T2 values increased. There were significant differences in FF and T2 values among the no KOA, severe KOA, and mild KOA groups, with FF values of 73.13%±3.98%, 67.42%±2.25%, and 61.92%±3.24%, and T2 values of 81.04 (79.61, 82.44) ms, 82.72 (81.44, 84.46) ms, and 86.79 (85.32, 89.12) ms, respectively (all P<0.001). The FF values were negatively correlated with KLG (r=-0.779), while the T2 values were positively correlated with KLG (r=0.688). The area under the curve (AUC) for diagnosing the presence of KOA using FF and T2 values was 0.937 and 0.837, with sensitivities of 71.8% and 70.0%, and specificities of 91.7% and 82.1%, respectively.Conclusions Changes in FF and T2 values of the IPFP can to some extent reflect the pathophysiological changes of the IPFP and are related to the severity of KOA, providing new methods for the evaluation of KOA.
[Keywords] knee osteoarthritis;infrapatellar fat pad;magnetic resonance imaging;quantitative detection

HAO Tianqi1, 2   ZHANG YUAN3   WANG Guohua1*   HUANG Xiaoming1   Yang Yaqing1, 2   ZHAO Hongfei1  

1 Department of Radiology, Qingdao Municipal Hospital, Qingdao 266011, China

2 Graduate School, Dalian Medical University, Dalian 116000, China

3 Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao 266011, China

Corresponding author: WANG G H, E-mail: wangguohua89@163.com

Conflicts of interest   None.

Received  2024-02-20
Accepted  2024-07-09
DOI: 10.12015/issn.1674-8034.2024.07.023
Cite this article as: HAO T Q, ZHANG Y, WANG G H, et al. Study on the correlation between infrapatellar fat pad IDEAL-IQ and T2 mapping sequences and the severity of knee osteoarthritis[J]. Chin J Magn Reson Imaging, 2024, 15(7): 137-142. DOI:10.12015/issn.1674-8034.2024.07.023.

[1]
LI J F, WANG Y J, ZHANG X S, et al. Study of the value of MR T2 mapping in the evaluation of peripheral muscle changes in knee osteoarthritis[J]. Chin J Magn Reson Imag, 2023, 14(3): 117-121, 133. DOI: 10.12015/issn.1674-8034.2023.03.020.
[2]
LUAN L J, EL-ANSARY D, ADAMS R, et al. Knee osteoarthritis pain and stretching exercises: a systematic review and meta-analysis[J]. Physiotherapy, 2022, 114: 16-29. DOI: 10.1016/j.physio.2021.10.001.
[3]
HUNTER D J, MARCH L, CHEW M. Osteoarthritis in 2020 and beyond: a lancet commission[J]. Lancet, 2020, 396(10264): 1711-1712. DOI: 10.1016/S0140-6736(20)32230-3.
[4]
WANG B, XING D, DONG S J, et al. Prevalence and disease burden of knee osteoarthritis in China: a systematic review[J]. Chin J Evid Based Med, 2018, 18(2): 134-142. DOI: 10.7507/1672-2531.201712031.
[5]
LIU Z, WU J Y, XIANG W, et al. Correlation between the signal intensity alteration of infrapatellar fat pad and knee osteoarthritis: a retrospective, cross-sectional study[J/OL]. J Clin Med, 2023, 12(4): 1331 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/36835867/. DOI: 10.3390/jcm12041331.
[6]
TSUKADA A, TAKATA K, AIKAWA J, et al. Association between high HbA1c levels and mast cell phenotype in the infrapatellar fat pad of patients with knee osteoarthritis[J/OL]. Int J Mol Sci, 2024, 25(2): 877 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/38255949/. DOI: 10.3390/ijms25020877.
[7]
LI J, FU S, GONG Z, et al. MRI-based texture analysis of infrapatellar fat pad to predict knee osteoarthritis incidence[J]. Radiology, 2022, 304(3): 611-621. DOI: 10.1148/radiol.212009.
[8]
DYKE J P. Quantitative MRI proton density fat fraction: a coming of age[J]. Radiology, 2021, 298(3): 652-653. DOI: 10.1148/radiol.2020204356.
[9]
HAJIBONABI F, SHARMA P, DAVARPANAH A H, et al. Performing quality control on magnetic resonance imaging liver fat/iron quantification studies: a critical requirement[J]. J Comput Assist Tomogr, 2023, 47(5): 689-697. DOI: 10.1097/RCT.0000000000001471.
[10]
ZHOU F, SHENG B, LV F R. Quantitative analysis of vertebral fat fraction and R2* in osteoporosis using IDEAL-IQ sequence[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 721 [2024-06-16]. https://pubmed2.tongyongbei.com/37697287/. DOI: 10.1186/s12891-023-06846-4.
[11]
ZHENG C S, WEN H Q, LIN W S, et al. Quantification of lumbar vertebral fat deposition: correlation with menopausal status, non-alcoholic fatty liver disease and subcutaneous adipose tissue[J/OL]. Front Endocrinol, 2022, 13: 1099919 [2024-06-16]. https://pubmed2.tongyongbei.com/36714601/. DOI: 10.3389/fendo.2022.1099919.
[12]
MOHAJER B, DOLATSHAHI M, MORADI K, et al. Role of thigh muscle changes in knee osteoarthritis outcomes: osteoarthritis initiative data[J]. Radiology, 2022, 305(1): 169-178. DOI: 10.1148/radiol.212771.
[13]
WANG B, YU N S. Consensus of four-stepladder program of knee osteoarthritis(2018)[J]. Chin J Jt Surg Electron Ed, 2019, 13(1): 124-130.
[14]
YE Q, HE D, DING X N, et al. Quantitative evaluation of the infrapatellar fat pad in knee osteoarthritis: MRI-based radiomic signature[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 326 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/37098523/. DOI: 10.1186/s12891-023-06433-7.
[15]
SHARMA L. Osteoarthritis of the knee[J]. N Engl J Med, 2021, 384(1): 51-59. DOI: 10.1056/NEJMcp1903768.
[16]
AN J S, TSUJI K, ONUMA H, et al. Inhibition of fibrotic changes in infrapatellar fat pad alleviates persistent pain and articular cartilage degeneration in monoiodoacetic acid-induced rat arthritis model[J]. Osteoarthritis Cartilage, 2021, 29(3): 380-388. DOI: 10.1016/j.joca.2020.12.014.
[17]
FAVERO M, EL-HADI H, BELLUZZI E, et al. Infrapatellar fat pad features in osteoarthritis: a histopathological and molecular study[J]. Rheumatology, 2017, 56(10): 1784-1793. DOI: 10.1093/rheumatology/kex287.
[18]
ZHU Z H, HAN W Y, LU M, et al. Effects of infrapatellar fat pad preservation versus resection on clinical outcomes after total knee arthroplasty in patients with knee osteoarthritis (IPAKA): study protocol for a multicentre, randomised, controlled clinical trial[J/OL]. BMJ Open, 2020, 10(10): e043088 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/33099502/. DOI: 10.1136/bmjopen-2020-043088.
[19]
HAN W Y, AITKEN D, ZHENG S, et al. Association between quantitatively measured infrapatellar fat pad high signal-intensity alteration and magnetic resonance imaging-assessed progression of knee osteoarthritis[J]. Arthritis Care Res, 2019, 71(5): 638-646. DOI: 10.1002/acr.23713.
[20]
WANG X, BLIZZARD L, HALLIDAY A, et al. Association between MRI-detected knee joint regional effusion-synovitis and structural changes in older adults: a cohort study[J]. Ann Rheum Dis, 2016, 75(3): 519-525. DOI: 10.1136/annrheumdis-2014-206676.
[21]
ZENG N, YAN Z P, CHEN X Y, et al. Infrapatellar fat pad and knee osteoarthritis[J]. Aging Dis, 2020, 11(5): 1317-1328. DOI: 10.14336/AD.2019.1116.
[22]
STOCCO E, CONTRAN M, FONTANELLA C G, et al. The suprapatellar fat pad: a histotopographic comparative study[J]. J Anat, 2024, 244(4): 639-653. DOI: 10.1111/joa.13984.
[23]
BELLUZZI E, STOCCO E, POZZUOLI A, et al. Contribution of infrapatellar fat pad and synovial membrane to knee osteoarthritis pain[J/OL]. Biomed Res Int, 2019, 2019: 6390182 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/31049352/. DOI: 10.1155/2019/6390182.
[24]
HENGTRAKOOL P, LEEARAMWAT N, SENGPRASERT P, et al. Infrapatellar fat pad adipose tissue-derived macrophages display a predominant CD11c+CD206+ phenotype and express genotypes attributable to key features of OA pathogenesis[J/OL]. Front Immunol, 2024, 15: 1326953 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/38361943/. DOI: 10.3389/fimmu.2024.1326953.
[25]
ZHANG J, LIN J P, ZHOU G, et al. Semi-quantitative MRI evaluation of cartilage degeneration in early knee osteoarthritis[J]. Chin J Tissue Eng Res, 2022, 26(3): 425-429. DOI: 10.12307/2022.070.
[26]
JARECKI J, POTOCZNIAK B, DZIEDZIC A, et al. Impact of the body composition on knee osteoarthritis assessed using bioimpedance analysis[J/OL]. J Clin Med, 2023, 12(22): 7037 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/38002651/. DOI: 10.3390/jcm12227037.
[27]
LUO P, HU W, JIANG L, et al. Evaluation of articular cartilage in knee osteoarthritis using hybrid multidimensional MRI[J]. Clin Radiol, 2022, 77(7): e518-e525 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/35469665/. DOI: 10.1016/j.crad.2022.03.002.
[28]
SONG Y K, GUO H W, HONG Z N, et al. Correlation between high signal area of infrapatellar fat pad and Varus deformity in patients with knee osteoarthritis[J]. J Pract Orthop, 2023, 29(9): 792-796. DOI: 10.13795/j.cnki.sgkz.2023.09.017.
[29]
ZHAO M, LIU H Y, WANG G H, et al. The correlation between the degree of meniscus injury of knee osteoarthritis and T1 rho, T2 mapping of the articular cartilage[J]. J China Clin Med Imag, 2019, 30(11): 812-816. DOI: 10.12117/jccmi.2019.11.012.
[30]
GAO J, HU B, WANG G H, et al. Application research of MRI T2 mapping and T1ρ quantitative imaging in osteoarthritis of the knee[J]. J Med Imag, 2022, 32(9): 1567-1571.
[31]
HU W Y, SU X Y, KE X T, et al. The research progress of diagnosing meniscus injury in MRI based on deep learning[J]. Chin J Magn Reson Imag, 2022, 13(5): 167-170. DOI: 10.12015/issn.1674-8034.2022.05.036.
[32]
PAN S X, WU J C, HE G X, et al. Morphological study of adult infrapatellar fat pad thickness measured by MRI[J]. J Kunming Med Univ, 2023, 44(3): 92-96. DOI: 10.12259/j.issn.2095-610X.S20230315.
[33]
ITO K, OHGI K, KIMURA K, et al. Kidney R2* mapping for noninvasive evaluation of iron overload in paroxysmal nocturnal hemoglobinuria[J/OL]. Magn Reson Med Sci, 2024 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/38369335/. DOI: 10.2463/mrms.mp.2023-0114.
[34]
ZHOU F, SHENG B, LV F R. Quantitative analysis of vertebral fat fraction and R2* in osteoporosis using IDEAL-IQ sequence[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 721 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/37697287/. DOI: 10.1186/s12891-023-06846-4.
[35]
YE L, WANG Y Y, XIANG W X, et al. Radiomic analysis of quantitative T2 mapping and conventional MRI in predicting histologic grade of bladder cancer[J/OL]. J Clin Med, 2023, 12(18): 5900 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/37762841/. DOI: 10.3390/jcm12185900.
[36]
CHEN Y J, ZHANG X T, LI M W, et al. Quantitative MR evaluation of the infrapatellar fat pad for knee osteoarthritis: using proton density fat fraction and T2* relaxation based on DIXON[J]. Eur Radiol, 2022, 32(7): 4718-4727. DOI: 10.1007/s00330-022-08561-5.
[37]
FONTANELLA C G, BELLUZZI E, ROSSATO M, et al. Quantitative MRI analysis of infrapatellar and suprapatellar fat pads in normal controls, moderate and end-stage osteoarthritis[J]. Anat Anz Off Organ Anat Gesell, 2019, 221: 108-114. DOI: 10.1016/j.aanat.2018.09.007.
[38]
YANG X T, THUDIUM C S, BAY-JENSEN A C, et al. Association between markers of synovial inflammation, matrix turnover and symptoms in knee osteoarthritis: a cross-sectional study[J/OL]. Cells, 2021, 10(7): 1826 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/34359996/. DOI: 10.3390/cells10071826.
[39]
RUAN G F, LU S L, ZHANG Y, et al. Quantitatively measured infrapatellar fat pad signal intensity alteration is associated with joint effusion-synovitis in knee osteoarthritis[J/OL]. Curr Med Imaging, 2023 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/36895124/. DOI: 10.2174/1573405619666230310093402.
[40]
SATAKE Y, IZUMI M, ASO K, et al. Association between infrapatellar fat pad ultrasound elasticity and anterior knee pain in patients with knee osteoarthritis[J/OL]. Sci Rep, 2023, 13(1): 20103 [2024-06-16]. https://pubmed.ncbi.nlm.nih.gov/37973859/. DOI: 10.1038/s41598-023-47459-0.

PREV Diagnosis of lower extremity arterial disease based on multi-sequence magnetic resonance vessel wall imaging
NEXT Research on radiomics reconstruction from cerebral cortex surface based on anatomical magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn