Share:
Share this content in WeChat
X
Review
Progress in functional MRI of the mechanism of visual feedback training on motor function rehabilitation in SCI patients
WANG Yu  CHEN Nan 

Cite this article as: WANG Y, CHEN N. Progress in functional MRI of the mechanism of visual feedback training on motor function rehabilitation in SCI patients[J]. Chin J Magn Reson Imaging, 2024, 15(7): 154-157. DOI:10.12015/issn.1674-8034.2024.07.026.


[Abstract] Visual feedback training (VFT) has been widely applied in the rehabilitation of spinal cord injury (SCI) and other motor dysfunctional diseases, and has achieved good therapeutic effects. However, the neural mechanism of its effect on motor function remains unclear. With the development of functional MRI (fMRI), it has been found that VFT is related to changes in inter- and intra- network functional connectivity, as well as activation of sensory-motor cortex, which provides a theoretical basis for revealing the neural mechanism by which VFT affects motor rehabilitation. Therefore, this paper reviews the progress of fMRI research on the mechanism of VFT in motor function rehabilitation in patients with SCI, providing neuroimaging evidence for the clinical application of VFT in motor rehabilitation of SCI patients.
[Keywords] spinal cord injury;visual feedback training;motor function;functional magnetic resonance imaging;magnetic resonance imaging;mirror-neuron system

WANG Yu1, 2   CHEN Nan1, 2*  

1 Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, China

2 Beijing Key Lab of MRI and Brain Informatics, Beijing 100053, China

Corresponding author: CHEN N, E-mail: chenzen8057@sina.com

Conflicts of interest   None.

Received  2024-03-17
Accepted  2024-07-06
DOI: 10.12015/issn.1674-8034.2024.07.026
Cite this article as: WANG Y, CHEN N. Progress in functional MRI of the mechanism of visual feedback training on motor function rehabilitation in SCI patients[J]. Chin J Magn Reson Imaging, 2024, 15(7): 154-157. DOI:10.12015/issn.1674-8034.2024.07.026.

[1]
KOHMURA Y, NAKATA M, KUBOTA A, et al. Effects of batting practice and visual training focused on pitch type and speed on batting ability and visual function[J]. J Hum Kinet, 2019, 70: 5-13. DOI: 10.2478/hukin-2019-0034.
[2]
BARGERI S, SCALEA S, AGOSTA F, et al. Effectiveness and safety of virtual reality rehabilitation after stroke: an overview of systematic reviews[J/OL]. Eclinicalmedicine, 2023, 64: 102220 [2024-03-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514431. DOI: 10.1016/j.eclinm.2023.102220.
[3]
CORTÉS-PÉREZ I, OSUNA-PÉREZ M C, MONTORO-CÁRDENAS D, et al. Virtual reality-based therapy improves balance and reduces fear of falling in patients with multiple sclerosis. a systematic review and meta-analysis of randomized controlled trials[J/OL]. J Neuroeng Rehabil, 2023, 20(1): 42 [2024-03-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088228. DOI: 10.1186/s12984-023-01174-z.
[4]
PARK M, KO M H, OH S W, et al. Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study[J/OL]. J Neuroeng Rehabil, 2019, 16(1): 122. [2024-03-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813964. DOI: 10.1186/s12984-019-0595-8.
[5]
CHEN J, OR C K, CHEN T. Effectiveness of using virtual reality-supported exercise therapy for upper extremity motor rehabilitation in patients with stroke: Systematic review and meta-analysis of randomized controlled trials[J/OL]. J Med Internet Res, 2022, 24(6): e24111 [2024-03-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253973. DOI: 10.2196/24111.
[6]
MEKBIB D B, ZHAO Z, WANG J, et al. Proactive motor functional recovery following immersive virtual reality-based limb mirroring therapy in patients with subacute stroke[J]. Neurotherapeutics, 2020, 17(4): 1919-1930. DOI: 10.1007/s13311-020-00882-x.
[7]
HOUSTON D J, UNGER J, LEE J W, et al. Perspectives of individuals with chronic spinal cord injury following novel balance training involving functional electrical stimulation with visual feedback: a qualitative exploratory study[J/OL]. J Neuroeng Rehabil, 2021, 18(1): 57 [2024-03-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017659. DOI: 10.1186/s12984-021-00861-z.
[8]
HORNBY T G, REISMAN D S, WARD I G, et al. Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury[J]. J Neurol Phys Ther, 2020, 44(1): 49-100. DOI: 10.1097/NPT.0000000000000303.
[9]
VAHDAT S, DARAINY M, THIEL A, et al. A single session of robot-controlled proprioceptive training modulates functional connectivity of sensory motor networks and improves reaching accuracy in chronic stroke[J]. Neurorehab Neural Re, 2019, 33(1): 70-81. DOI: 10.1177/1545968318818902.
[10]
DE BROUWER A J, FLANAGAN J R, SPERING M. Functional use of eye movements for an acting system[J]. Trends Cogn Sci, 2021, 25(3): 252-263. DOI: 10.1016/j.tics.2020.12.006.
[11]
FIŞEK M, HERRMANN D, EGEA-WEISS A, et al. Cortico-cortical feedback engages active dendrites in visual cortex[J]. Nature, 2023, 617(7962): 769-776. DOI: 10.1038/s41586-023-06007-6.
[12]
CROSS K P, GUANG H, SCOTT S H. Proprioceptive and visual feedback responses in macaques exploit goal redundancy[J]. J Neurosci, 2023, 43(5): 787-802. DOI: 10.1523/JNEUROSCI.1332-22.2022.
[13]
HALME H, PARKKONEN L. The effect of visual and proprioceptive feedback on sensorimotor rhythms during BCI training[J/OL]. Plos One, 2022, 17(2): e264354 [2024-03-17]. https://dx.plos.org/10.1371/journal.pone.0264354. DOI: 10.1371/journal.pone.0264354.
[14]
TAKEOKA A, ARBER S. Functional local proprioceptive feedback circuits initiate and maintain locomotor recovery after spinal cord injury[J]. Cell Rep, 2019, 27(1): 71-85. DOI: 10.1016/j.celrep.2019.03.010.
[15]
CHOE A S, BELEGU V, YOSHIDA S, et al. Extensive neurological recovery from a complete spinal cord injury: a case report and hypothesis on the role of cortical plasticity[J/OL]. Front Hum Neurosci, 2013, 7: 290 [2024-03-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691521. DOI: 10.3389/fnhum.2013.00290.
[16]
SCANDOLA M, AGLIOTI S M, LAZZERI G, et al. Visuo-motor and interoceptive influences on peripersonal space representation following spinal cord injury[J/OL]. Sci Rep, 2020, 10(1): 5162 [2024-03-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083926. DOI: 10.1038/s41598-020-62080-1.
[17]
BONINI L, ROTUNNO C, ARCURI E, et al. Mirror neurons 30 years later: implications and applications[J]. Trends Cogn Sci, 2022, 26(9): 767-781. DOI: 10.1016/j.tics.2022.06.003.
[18]
HEYES C, CATMUR C. What happened to mirror neurons?[J]. Perspect Psychol Sci, 2022, 17(1): 153-168. DOI: 10.1177/1745691621990638.
[19]
ERRANTE A, FERRARO S, DEMICHELIS G, et al. Brain activation during processing of mouth actions in patients with disorders of consciousness[J/OL]. Brain Commun, 2024, 6(2): fcae45 [2024-03-17]. https://academic.oup.com/braincomms/article/6/2/fcae045/7608870?login=true. DOI: 10.1093/braincomms/fcae045.
[20]
GOLDENKOFF E R, MCGREGOR H R, MERGOS J, et al. Reversal of visual feedback modulates somatosensory plasticity[J]. Neuroscience, 2021, 452: 335-344. DOI: 10.1016/j.neuroscience.2020.10.033.
[21]
PROIETTI R, PEZZULO G, TESSARI A. An active inference model of hierarchical action understanding, learning and imitation[J]. Phys Life Rev, 2023, 46: 92-118. DOI: 10.1016/j.plrev.2023.05.012.
[22]
JERJIAN S J, SAHANI M, KRASKOV A. Movement initiation and grasp representation in premotor and primary motor cortex mirror neurons[J/OL]. Elife, 2020, 9 [2024-03-17]. https://elifesciences.org/articles/54139. DOI: 10.7554/eLife.54139.
[23]
GALVEZ-POL A, FORSTER B, CALVO-MERINO B. Beyond action observation: Neurobehavioral mechanisms of memory for visually perceived bodies and actions[J]. Neurosci Biobehav R, 2020, 116: 508-518. DOI: 10.1016/j.neubiorev.2020.06.014.
[24]
KLINE A, PITTMAN D, RONSKY J, et al. Differentiating the Brain's involvement in Executed and Imagined Stepping using fMRI[J/OL]. Behav Brain Res, 2020, 394: 112829 [2024-03-17]. https://www.sciencedirect.com/science/article/pii/S0166432820305283?via%3Dihub. DOI: 10.1016/j.bbr.2020.112829.
[25]
HÜLSDÜNKER T, RENTZ C, RUHNOW D, et al. The effect of 4-week stroboscopic training on visual function and sport-specific visuomotor performance in top-level badminton players[J]. Int J Sport Physiol, 2019, 14(3): 343-350. DOI: 10.1123/ijspp.2018-0302.
[26]
MESULAM M M. Temporopolar regions of the human brain[J]. Brain, 2023, 146(1): 20-41. DOI: 10.1093/brain/awac339.
[27]
KLEIN L K, MAIELLO G, STUBBS K, et al. Distinct neural components of visually guided grasping during planning and execution[J]. J Neurosci, 2023, 43(49): 8504-8514. DOI: 10.1523/JNEUROSCI.0335-23.2023.
[28]
NIU M, IMPIERI D, RAPAN L, et al. Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus[J/OL]. Elife, 2020, 9 [2024-03-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365665. DOI: 10.7554/eLife.55979.
[29]
HALVERSON H E, KIM J, FREEMAN J H. Dynamic changes in local activity and network interactions among the anterior cingulate, amygdala, and cerebellum during associative learning[J]. J Neurosci, 2023, 43(49): 8385-8402. DOI: 10.1523/JNEUROSCI.0731-23.2023.
[30]
HEINEY S A, WOJACZYNSKI G J, MEDINA J F. Action-based organization of a cerebellar module specialized for predictive control of multiple body parts[J]. Neuron, 2021, 109(18): 2981-2994. DOI: 10.1016/j.neuron.2021.08.017.
[31]
SUN H, HE Y, CAO H. Functional magnetic resonance imaging research in China[J]. Cns Neurosci Ther, 2021, 27(11): 1259-1267. DOI: 10.1111/cns.13725.
[32]
ARRIGO A, CALAMUNERI A, MILARDI D, et al. Visual system involvement in patients with newly diagnosed parkinson disease[J]. Radiology, 2017, 285(3): 885-895. DOI: 10.1148/radiol.2017161732.
[33]
HAWASLI A H, RUTLIN J, ROLAND J L, et al. Spinal cord injury disrupts resting-state networks in the human brain[J]. J Neurotraum, 2018, 35(6): 864-873. DOI: 10.1089/neu.2017.5212.
[34]
CHEN Q, ZHENG W, CHEN X, et al. Whether visual-related structural and functional changes occur in brain of patients with acute incomplete cervical cord injury: A multimodal based MRI study[J]. Neuroscience, 2018, 393: 284-294. DOI: 10.1016/j.neuroscience.2018.10.014.
[35]
WANG L, ZHENG W, YANG B, et al. Altered functional connectivity between primary motor cortex subregions and the whole brain in patients with incomplete cervical spinal cord injury[J/OL]. Front Neurosci, 2022, 16: 996325 [2024-03-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669417. DOI: 10.3389/fnins.2022.996325.
[36]
RUEHL R M, FLANAGIN V L, OPHEY L, et al. The human egomotion network[J/OL]. Neuroimage, 2022, 264: 119715. [2024-03-17]. https://www.sciencedirect.com/science/article/pii/S1053811922008369?via%3Dihub. DOI: 10.1016/j.neuroimage.2022.119715.
[37]
BEER A L, BECKER M, FRANK S M, et al. Vestibular and visual brain areas in the medial cortex of the human brain[J]. J Neurophysiol, 2023, 129(4): 948-962. DOI: 10.1152/jn.00431.2022.
[38]
VALLESI V, RICHTER J K, HUNKELER N, et al. Functional connectivity and amplitude of low-frequency fluctuations changes in people with complete subacute and chronic spinal cord injury[J/OL]. Sci Rep, 2022, 12(1): 20874 [2024-03-17]. https://www.nature.com/articles/s41598-022-25345-5. DOI: 10.1038/s41598-022-25345-5.
[39]
DE CASTRO V, SMITH A T, BEER A L, et al. Connectivity of the cingulate sulcus visual area (CSv) in macaque monkeys[J]. Cereb Cortex, 2021, 31(2): 1347-1364. DOI: 10.1093/cercor/bhaa301.
[40]
SALEH S, ADAMOVICH S V, TUNIK E. Mirrored feedback in chronic stroke[J]. Neurorehab Neural Re, 2014, 28(4): 344-354. DOI: 10.1177/1545968313513074.
[41]
HU X, XU W, REN Y, et al. Spinal cord injury: molecular mechanisms and therapeutic interventions[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 245 [2024-03-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291001. DOI: 10.1038/s41392-023-01477-6.
[42]
HARKEMA S, ANGELI C, GERASIMENKO Y. Historical development and contemporary use of neuromodulation in human spinal cord injury[J]. Curr Opin Neurol, 2022, 35(4): 536-543. DOI: 10.1097/WCO.0000000000001080.
[43]
NIERHAUS T, VIDAURRE C, SANNELLI C, et al. Immediate brain plasticity after one hour of brain-computer interface (BCI)[J]. J Physiol, 2021, 599(9): 2435-2451. DOI: 10.1113/JP278118.
[44]
SABBAH P, DE S S, LEVEQUE C, et al. Sensorimotor cortical activity in patients with complete spinal cord injury: a functional magnetic resonance imaging study[J]. J Neurotraum, 2002, 19(1): 53-60. DOI: 10.1089/089771502753460231.
[45]
ARCHER D B, KANG N, MISRA G, et al. Visual feedback alters force control and functional activity in the visuomotor network after stroke[J]. Neuroimage Clin, 2018, 17: 505-517. DOI: 10.1016/j.nicl.2017.11.012.
[46]
OSSMY O, MANSANO L, FRENKEL-TOLEDO S, et al. Motor learning in hemi-Parkinson using VR-manipulated sensory feedback[J]. Disabil Rehabil Assist Technol, 2022, 17(3): 349-361. DOI: 10.1080/17483107.2020.1785561.
[47]
LEI Y, PEREZ M A. Cerebellar contribution to sensorimotor adaptation deficits in humans with spinal cord injury[J/OL]. Sci Rep, 2021, 11(1): 2507 [2024-03-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843630. DOI: 10.1038/s41598-020-77543-8.
[48]
KÜPER M, WÜNNEMANN M J S, THÜRLING M, et al. Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study[J]. Hum Brain Mapp, 2014, 35(4): 1574-1586. DOI: 10.1002/hbm.22274.
[49]
CHI B, CHAU B, YEO E, et al. Virtual reality for spinal cord injury-associated neuropathic pain: Systematic review[J]. Ann Phys Rehabil Med, 2019, 62(1): 49-57. DOI: 10.1016/j.rehab.2018.09.006.
[50]
DE MIGUEL-RUBIO A, RUBIO M D, ALBA-RUEDA A, et al. Virtual reality systems for upper limb motor function recovery in patients with spinal cord injury: Systematic review and meta-analysis[J/OL]. JMIR Mhealth Uhealth, 2020, 8(12): e22537 [2024-03-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746495. DOI: 10.2196/22537.

PREV One case of cerebrotendinous xanthomatosis
NEXT Research progress of glioma volume and spatial distribution in amino acid PET/MR multimodal imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn