Share:
Share this content in WeChat
X
Review
Research progress of glioma volume and spatial distribution in amino acid PET/MR multimodal imaging
LI Xiaoran  LU Jie 

Cite this article as: LI X R, LU J. Research progress of glioma volume and spatial distribution in amino acid PET/MR multimodal imaging[J]. Chin J Magn Reson Imaging, 2024, 15(7): 158-164. DOI:10.12015/issn.1674-8034.2024.07.027.


[Abstract] Gliomas are the most common primary malignant brain tumors in adults, and resection of tumours based on structural magnetic resonance (MR) imaging is the conventional treatment. However, structural MR imaging is difficult to accurately demonstrate the volume and spatial distribution of the glioma, which leads to postoperative tumour residuals that may shorten the survival of patients. There are overlaps and differences in the volume and spatial distribution of gliomas shown by amino acid positron emission tomography/magnetic resonance (PET/MR) multimodal imaging. This paper reviewed the differences in the volume and spatial distribution of gliomas shown by amino acid PET and structure, perfusion, and molecular images of MR to explore the heterogeneity of tumour spatial distribution in multimodal images and compare the accuracy of spatial distribution of tumours in different modal images. It will assist developing the optimal multimodal image combination based on PET/MR for guiding glioma surgery, to maximize the safe resection of the tumour and improve the prognosis of glioma patients, as well as to provide insights for further research on spatial distribution characterization of PET/MR images mediated by the molecular biological mechanism of glioma.
[Keywords] gliomas;amino acid positron emission tomography;magnetic resonance imaging;multimodal imaging;tumor volume;tumor spatial distribution

LI Xiaoran1, 2   LU Jie1, 2*  

1 Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 10053, China

2 Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 10053, China

Corresponding author: LU J, E-mail: imaginglu@hotmail.com

Conflicts of interest   None.

Received  2024-05-24
Accepted  2024-07-06
DOI: 10.12015/issn.1674-8034.2024.07.027
Cite this article as: LI X R, LU J. Research progress of glioma volume and spatial distribution in amino acid PET/MR multimodal imaging[J]. Chin J Magn Reson Imaging, 2024, 15(7): 158-164. DOI:10.12015/issn.1674-8034.2024.07.027.

[1]
ZHAO Z, ZHANG K N, WANG Q W, et al. Chinese glioma genome atlas (CGGA): a comprehensive resource with functional genomic data from Chinese glioma patients[J]. Genomics Proteomics Bioinformatics, 2021, 19(1): 1-12. DOI: 10.1016/j.gpb.2020.10.005.
[2]
VAN DEN BENT M J, GEURTS M, FRENCH P J, et al. Primary brain tumours in adults[J]. Lancet, 2023, 402(10412): 1564-1579. DOI: 10.1016/S0140-6736(23)01054-1.
[3]
HERVEY-JUMPER S L, ZHANG Y L, PHILLIPS J J, et al. Interactive effects of molecular, therapeutic, and patient factors on outcome of diffuse low-grade glioma[J]. J Clin Oncol, 2023, 41(11): 2029-2042. DOI: 10.1200/JCO.21.02929.
[4]
KARSCHNIA P, SMITS M, REIFENBERGER G, et al. A framework for standardised tissue sampling and processing during resection of diffuse intracranial glioma: joint recommendations from four RANO groups[J/OL]. Lancet Oncol, 2023, 24(11): e438-e450 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/37922934/. DOI: 10.1016/S1470-2045(23)00453-9.
[5]
GALLDIKS N, LOHMANN P, FINK G R, et al. Amino acid PET in neurooncology[J]. J Nucl Med, 2023, 64(5): 693-700. DOI: 10.2967/jnumed.122.264859.
[6]
EISAZADEH R, SHAHBAZI-AKBARI M, MIRSHAHVALAD S A, et al. Application of artificial intelligence in oncologic molecular PET-imaging: a narrative review on beyond[18F]F-FDG tracers part II.[18F]F-FLT, [18F]F-FET, [11C]C-MET and other less-commonly used radiotracers[J]. Semin Nucl Med, 2024, 54(2): 293-301. DOI: 10.1053/j.semnuclmed.2024.01.002.
[7]
ZHOU W Y, ZHOU Z R, WEN J B, et al. A nomogram modeling 11C-MET PET/CT and clinical features in glioma helps predict IDH mutation[J/OL]. Front Oncol, 2020, 10: 1200 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/32850348/. DOI: 10.3389/fonc.2020.01200.
[8]
SONG S S, WANG L M, YANG H W, et al. Static 18F-FET PET and DSC-PWI based on hybrid PET/MR for the prediction of gliomas defined by IDH and 1p/19q status[J]. Eur Radiol, 2021, 31(6): 4087-4096. DOI: 10.1007/s00330-020-07470-9.
[9]
CHEN Q, WANG K, REN X H, et al. Individualized discrimination of tumor progression from treatment-related changes in different types of adult-type diffuse gliomas using[11C]methionine PET[J]. J Neurooncol, 2023, 165(3): 547-559. DOI: 10.1007/s11060-023-04529-7.
[10]
ZHOU W Y, WEN J B, HUANG Q, et al. Development and validation of clinical-radiomics analysis for preoperative prediction of IDH mutation status and WHO grade in diffuse gliomas: a consecutive L-[methyl-11C]methionine cohort study with two PET scanners[J]. Eur J Nucl Med Mol Imaging, 2024, 51(5): 1423-1435. DOI: 10.1007/s00259-023-06562-0.
[11]
KAISER L, QUACH S, ZOUNEK A J, et al. Enhancing predictability of IDH mutation status in glioma patients at initial diagnosis: a comparative analysis of radiomics from MRI, [18F]FET PET, and TSPO PET[J]. Eur J Nucl Med Mol Imaging, 2024, 51(8): 2371-2381. DOI: 10.1007/s00259-024-06654-5.
[12]
NAKAYAMA N, YAMADA T, YANO H, et al. Prediction of nuclide accumulation spread based on the volume of enhancing magnetic resonance imaging lesion in glioblastoma patients[J]. J Neurosurg Sci, 2024, 68(2): 164-173. DOI: 10.23736/S0390-5616.21.05353-4.
[13]
LOHMEIER J, RADBRUCH H, BRENNER W, et al. Detection of recurrent high-grade glioma using microstructure characteristics of distinct metabolic compartments in a multimodal and integrative 18F-FET PET/fast-DKI approach[J]. Eur Radiol, 2024, 34(4): 2487-2499. DOI: 10.1007/s00330-023-10141-0.
[14]
PANHOLZER J, MALSINER-WALLI G, GRÜN B, et al. Multiparametric analysis combining DSC-MR perfusion and[18F]FET-PET is superior to aSingle parameter approach for differentiation of progressive glioma from radiation necrosis[J]. Clin Neuroradiol, 2024, 34(2): 351-360. DOI: 10.1007/s00062-023-01372-1.
[15]
FRAIOLI F, SHANKAR A, HYARE H, et al. The use of multiparametric 18F-fluoro-L-3, 4-dihydroxy-phenylalanine PET/MRI in post-therapy assessment of patients with gliomas[J]. Nucl Med Commun, 2020, 41(6): 517-525. DOI: 10.1097/MNM.0000000000001184.
[16]
HARAT M, RAKOWSKA J, HARAT M, et al. Combining amino acid PET and MRI imaging increases accuracy to define malignant areas in adult glioma[J/OL]. Nat Commun, 2023, 14(1): 4572 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/37516762/. DOI: 10.1038/s41467-023-39731-8.
[17]
VERBURG N, KOOPMAN T, YAQUB M M, et al. Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study[J]. Neuro Oncol, 2020, 22(3): 412-422. DOI: 10.1093/neuonc/noz180.
[18]
TIETZE A, BOLDSEN J K, MOURIDSEN K, et al. Spatial distribution of malignant tissue in gliomas: correlations of 11C-L-methionine positron emission tomography and perfusion- and diffusion-weighted magnetic resonance imaging[J]. Acta Radiol, 2015, 56(9): 1135-1144. DOI: 10.1177/0284185114550020.
[19]
WU R L, WATANABE Y, ARISAWA A, et al. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading[J]. Jpn J Radiol, 2017, 35(10): 613-621. DOI: 10.1007/s11604-017-0675-2.
[20]
NINATTI G, SOLLINI M, BONO B, et al. Preoperative[11C]methionine PET to personalize treatment decisions in patients with lower-grade gliomas[J]. Neuro Oncol, 2022, 24(9): 1546-1556. DOI: 10.1093/neuonc/noac040.
[21]
ROESSLER K, GATTERBAUER B, BECHERER A, et al. Surgical target selection in cerebral glioma surgery: linking methionine (MET) PET image fusion and neuronavigation[J]. Minim Invasive Neurosurg, 2007, 50(5): 273-280. DOI: 10.1055/s-2007-991143.
[22]
VON ROHR K, UNTERRAINER M, HOLZGREVE A, et al. Can radiomics provide additional information in [18F]FET-negative gliomas?[J/OL]. Cancers, 2022, 14(19): 4860 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/36230783/. DOI: 10.3390/cancers14194860.
[23]
PICCARDO A, ALBERT N L, BORGWARDT L, et al. Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and[18F]FDG: version 1.0[J]. Eur J Nucl Med Mol Imaging, 2022, 49(11): 3852-3869. DOI: 10.1007/s00259-022-05817-6.
[24]
IDEGUCHI M, NISHIZAKI T, IKEDA N, et al. A surgical strategy using a fusion image constructed from 11C-methionine PET, 18F-FDG-PET and MRI for glioma with no or minimum contrast enhancement[J]. J Neurooncol, 2018, 138(3): 537-548. DOI: 10.1007/s11060-018-2821-9.
[25]
INOUE A, OHNISHI T, KOHNO S, et al. Met-PET uptake index for total tumor resection: identification of 11C-methionine uptake index as a goal for total tumor resection including infiltrating tumor cells in glioblastoma[J]. Neurosurg Rev, 2021, 44(1): 587-597. DOI: 10.1007/s10143-020-01258-7.
[26]
MILLER S, LI P, SCHIPPER M, et al. Metabolic tumor volume response assessment using (11)C-methionine positron emission tomography identifies glioblastoma tumor subregions that predict progression better than baseline or anatomic magnetic resonance imaging alone[J]. Adv Radiat Oncol, 2019, 5(1): 53-61. DOI: 10.1016/j.adro.2019.08.004.
[27]
ALTIERI R, CERTO F, PACELLA D, et al. Metabolic delineation of IDH1 wild-type glioblastoma surgical anatomy: how to plan the tumor extent of resection[J]. J Neurooncol, 2023, 162(2): 417-423. DOI: 10.1007/s11060-023-04305-7.
[28]
YAMAMOTO S, OKITA Y, ARITA H, et al. Qualitative MR features to identify non-enhancing tumors within glioblastoma's T2-FLAIR hyperintense lesions[J]. J Neurooncol, 2023, 165(2): 251-259. DOI: 10.1007/s11060-023-04454-9.
[29]
GROSU A L, ASTNER S T, RIEDEL E, et al. An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases[J]. Int J Radiat Oncol Biol Phys, 2011, 81(4): 1049-1058. DOI: 10.1016/j.ijrobp.2010.07.002.
[30]
KAISER L, HOLZGREVE A, QUACH S, et al. Differential spatial distribution of TSPO or amino acid PET signal and MRI contrast enhancement in gliomas[J/OL]. Cancers, 2021, 14(1): 53 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/35008218/. DOI: 10.3390/cancers14010053.
[31]
ALLARD B, DISSAUX B, BOURHIS D, et al. Hotspot on 18F-FET PET/CT to predict aggressive tumor areas for radiotherapy dose escalation guiding in high-grade glioma[J/OL]. Cancers, 2022, 15(1): 98 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/36612093/. DOI: 10.3390/cancers15010098.
[32]
LATRECHE A, DISSAUX G, QUERELLOU S, et al. Correlation between rCBV delineation similarity and overall survival in a prospective cohort of high-grade gliomas patients: the hidden value of multimodal MRI?[J/OL]. Biomedicines, 2024, 12(4): 789 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/38672146/. DOI: 10.3390/biomedicines12040789.
[33]
STEGMAYR C, STOFFELS G, FILß C, et al. Current trends in the use of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) in neurooncology[J/OL]. Nucl Med Biol, 2021, 92: 78-84 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/32113820/. DOI: 10.1016/j.nucmedbio.2020.02.006.
[34]
SONG S S, CHENG Y, MA J, et al. Simultaneous FET-PET and contrast-enhanced MRI based on hybrid PET/MR improves delineation of tumor spatial biodistribution in gliomas: a biopsy validation study[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1458-1467. DOI: 10.1007/s00259-019-04656-2.
[35]
HARAT M, MIECHOWICZ I, RAKOWSKA J, et al. A biopsy-controlled prospective study of contrast-enhancing diffuse glioma infiltration based on FET-PET and FLAIR[J/OL]. Cancers, 2024, 16(7): 1265 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/38610944/. DOI: 10.3390/cancers16071265.
[36]
LI X R, CHENG Y, HAN X, et al. Exploring the association of glioma tumor residuals from incongruent[18F]FET PET/MR imaging with tumor proliferation using a multiparametric MRI radiomics nomogram[J]. Eur J Nucl Med Mol Imaging, 2024, 51(3): 779-796. DOI: 10.1007/s00259-023-06468-x.
[37]
PONISIO M R, MCCONATHY J E, DAHIYA S M, et al. Dynamic 18F-FDOPA-PET/MRI for the preoperative evaluation of gliomas: correlation with stereotactic histopathology[J]. Neurooncol Pract, 2020, 7(6): 656-667. DOI: 10.1093/nop/npaa044.
[38]
TATEKAWA H, UETANI H, HAGIWARA A, et al. Worse prognosis for IDH wild-type diffuse gliomas with larger residual biological tumor burden[J]. Ann Nucl Med, 2021, 35(9): 1022-1029. DOI: 10.1007/s12149-021-01637-0.
[39]
BRENDLE C, HEMPEL J M, SCHITTENHELM J, et al. Glioma grading by dynamic susceptibility contrast perfusion and 11C-methionine positron emission tomography using different regions of interest[J]. Neuroradiology, 2018, 60(4): 381-389. DOI: 10.1007/s00234-018-1993-5.
[40]
VERGER A, FILSS C P, LOHMANN P, et al. Comparison of 18F-FET PET and perfusion-weighted MRI for glioma grading: a hybrid PET/MR study[J]. Eur J Nucl Med Mol Imaging, 2017, 44(13): 2257-2265. DOI: 10.1007/s00259-017-3812-3.
[41]
ZIEGENFEUTER J, DELBRIDGE C, BERNHARDT D, et al. Sequential and hybrid PET/MRI acquisition in follow-up examination of glioblastoma show similar diagnostic performance[J/OL]. Cancers, 2022, 15(1): 83 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/36612079/. DOI: 10.3390/cancers15010083.
[42]
FILSS C P, CRAMER J, LÖHER S, et al. Assessment of brain tumour perfusion using early-phase 18F-FET PET: comparison with perfusion-weighted MRI[J]. Mol Imaging Biol, 2024, 26(1): 36-44. DOI: 10.1007/s11307-023-01861-2.
[43]
CICONE F, FILSS C P, MINNITI G, et al. Volumetric assessment of recurrent or progressive gliomas: comparison between F-DOPA PET and perfusion-weighted MRI[J]. Eur J Nucl Med Mol Imaging, 2015, 42(6): 905-915. DOI: 10.1007/s00259-015-3018-5.
[44]
GIRARD A, FRANÇOIS M, CHABOUB N, et al. Impact of point-spread function reconstruction on dynamic and static 18F-DOPA PET/CT quantitative parameters in glioma[J]. Quant Imaging Med Surg, 2022, 12(2): 1397-1404. DOI: 10.21037/qims-21-742.
[45]
INOUE A, WATANABE H, KUSAKABE K, et al. Role of amide proton transfer imaging in maximizing tumor resection in malignant glioma: a possibility to take the place of 11C-methionine positron emission tomography[J/OL]. Neurosurg Rev, 2023, 46(1): 294 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/37925381/. DOI: 10.1007/s10143-023-02202-1.
[46]
STADLBAUER A, PRANTE O, NIMSKY C, et al. Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2-18F-fluoroethyl)-L-tyrosine PET and proton magnetic resonance spectroscopic imaging[J]. J Nucl Med, 2008, 49(5): 721-729. DOI: 10.2967/jnumed.107.049213.
[47]
MAULER J, MAUDSLEY A A, LANGEN K J, et al. Spatial relationship of glioma volume derived from 18F-FET PET and volumetric MR spectroscopy imaging: a hybrid PET/MRI study[J]. J Nucl Med, 2018, 59(4): 603-609. DOI: 10.2967/jnumed.117.196709.
[48]
MAULER J, LOHMANN P, MAUDSLEY A A, et al. Diagnostic accuracy of MR spectroscopic imaging and 18F-FET PET for identifying glioma: a biopsy-controlled hybrid PET/MRI study[J]. J Nucl Med, 2024, 65(1): 16-21. DOI: 10.2967/jnumed.123.265868.
[49]
SILVA N A DA, LOHMANN P, FAIRNEY J, et al. Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI[J]. Eur J Nucl Med Mol Imaging, 2018, 45(6): 1031-1040. DOI: 10.1007/s00259-018-3940-4.
[50]
SCHÖN S, CABELLO J, LIESCHE-STARNECKER F, et al. Imaging glioma biology: spatial comparison of amino acid PET, amide proton transfer, and perfusion-weighted MRI in newly diagnosed gliomas[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1468-1475. DOI: 10.1007/s00259-019-04677-x.
[51]
YUAN Y F, YU Y, GUO Y, et al. Noninvasive delineation of glioma infiltration with combined 7T chemical exchange saturation transfer imaging and MR spectroscopy: a diagnostic accuracy study[J/OL]. Metabolites, 2022, 12(10): 901 [2024-05-23]. https://pubmed.ncbi.nlm.nih.gov/36295803/. DOI: 10.3390/metabo12100901.

PREV Progress in functional MRI of the mechanism of visual feedback training on motor function rehabilitation in SCI patients
NEXT Research progress of multimodal MRI radiomics and deep learning in glioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn