Share:
Share this content in WeChat
X
Review
Research progress on multimodal MRI in central nervous system changes induced by fundus diseases
JI Yu  CHENG Qi  FU Wenwen  WU Xiaorong 

Cite this article as: JI Y, CHENG Q, FU W W, et al. Research progress on multimodal MRI in central nervous system changes induced by fundus diseases[J]. Chin J Magn Reson Imaging, 2024, 15(7): 173-178. DOI:10.12015/issn.1674-8034.2024.07.029.


[Abstract] Fundus diseases are among the most common conditions in ophthalmology. Due to their complexity and serious threat to vision, in-depth research and effective treatment are especially critical. In recent years, with the continuous development and innovation of multimodal magnetic resonance imaging (MRI) technology in the medical field, significant breakthroughs have also been achieved in the study of fundus diseases. Through this technology, we have gradually realized that fundus diseases are not only confined to pathological changes in the eye but may also induce related changes in the central nervous system. Therefore, this paper reviewed the current research status on the changes and mechanisms of the central nervous system caused by fundus diseases using multimodal MRI technology in recent years. The aim is to enhance the understanding of the mechanisms of central nervous system lesions caused by fundus diseases and to provide valuable references and guidance for future research and clinical diagnosis and treatment.
[Keywords] retinal diseases;central nervous system;magnetic resonance imaging;structural magnetic resonance imaging;diffusion magnetic resonance imaging;functional magnetic resonance imaging;perfusion magnetic resonance imaging

JI Yu   CHENG Qi   FU Wenwen   WU Xiaorong*  

Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China

Corresponding author: WU X R, E-mail: wxr98021@126.com

Conflicts of interest   None.

Received  2024-04-03
Accepted  2024-06-06
DOI: 10.12015/issn.1674-8034.2024.07.029
Cite this article as: JI Y, CHENG Q, FU W W, et al. Research progress on multimodal MRI in central nervous system changes induced by fundus diseases[J]. Chin J Magn Reson Imaging, 2024, 15(7): 173-178. DOI:10.12015/issn.1674-8034.2024.07.029.

[1]
VUJOSEVIC S, PARRA M M, HARTNETT M E, et al. Optical coherence tomography as retinal imaging biomarker of neuroinflammation/neurodegeneration in systemic disorders in adults and children[J]. Eye, 2023, 37(2): 203-219. DOI: 10.1038/s41433-022-02056-9.
[2]
HUANG X, XIE B J, QI C X, et al. Abnormal intrinsic functional network hubs in diabetic retinopathy patients[J]. Neuroreport, 2021, 32(6): 498-506. DOI: 10.1097/WNR.0000000000001620.
[3]
LI B, LIU Y X, LI H J, et al. Reduced gray matter volume in patients with retinal detachment: evidence from a voxel-based morphometry study[J]. Acta Radiol, 2020, 61(3): 395-403. DOI: 10.1177/0284185119861898.
[4]
CAI Y H, HUANG X. Abnormal functional connectivity strength in age-related macular degeneration patients: a fMRI study[J]. Neuroreport, 2023, 34(18): 845-852. DOI: 10.1097/WNR.0000000000001962.
[5]
LEE M H, SMYSER C D, SHIMONY J S. Resting-state fMRI: a review of methods and clinical applications[J]. AJNR Am J Neuroradiol, 2013, 34(10): 1866-1872. DOI: 10.3174/ajnr.A3263.
[6]
SUI J, HUSTER R, YU Q B, et al. Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies[J/OL]. NeuroImage, 2014, 102Pt 1: 11-23 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/24084066/. DOI: 10.1016/j.neuroimage.2013.09.044.
[7]
GHOSH A, DERICHE R. A survey of current trends in diffusion MRI for structural brain connectivity[J/OL]. J Neural Eng, 2016, 13(1): 011001 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/26695367/. DOI: 10.1088/1741-2560/13/1/011001.
[8]
ASHBURNER J, FRISTON K J. Voxel-based morphometry: the methods[J]. Neuroimage, 2000, 11(6Pt 1): 805-821. DOI: 10.1006/nimg.2000.0582.
[9]
DALE A M, FISCHL B, SERENO M I. Cortical surface-based analysis. I. Segmentation and surface reconstruction[J]. Neuroimage, 1999, 9(2): 179-194. DOI: 10.1006/nimg.1998.0395.
[10]
FISCHL B, SERENO M I, DALE A M. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system[J]. NeuroImage, 1999, 9(2): 195-207. DOI: 10.1006/nimg.1998.0396.
[11]
AHMED F, RAS J, SEEDAT S. Volumetric structural magnetic resonance imaging findings in pediatric posttraumatic stress disorder and obsessive compulsive disorder: a systematic review[J/OL]. Front Psychol, 2012, 3: 568 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/23272001/. DOI: 10.3389/fpsyg.2012.00568.
[12]
ZHAI H, FAN W L, XIAO Y, et al. Voxel-based morphometry of grey matter structures in Parkinson's Disease with wearing-off[J]. Brain Imaging Behav, 2023, 17(6): 725-737. DOI: 10.1007/s11682-023-00793-3.
[13]
GE Q M, SHEN Y K, PAN Y C, et al. Decreased gray matter volume and increased white matter volume in patients with neovascular age-related macular degeneration: a voxel-based morphometry study[J]. Aging, 2021, 13(19): 23182-23192. DOI: 10.18632/aging.203610.
[14]
HUANG X, HU Y X, ZHOU F Q, et al. Altered whole-brain gray matter volume in high myopia patients: a voxel-based morphometry study[J]. Neuroreport, 2018, 29(9): 760-767. DOI: 10.1097/WNR.0000000000001028.
[15]
RITA MACHADO A, CARVALHO PEREIRA A, FERREIRA F, et al. Structure-function correlations in Retinitis Pigmentosa patients with partially preserved vision: a voxel-based morphometry study[J/OL]. Sci Rep, 2017, 7(1): 11411 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/28900214/. DOI: 10.1038/s41598-017-11317-7.
[16]
RICCELLI R, TOSCHI N, NIGRO S, et al. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality[J]. Soc Cogn Affect Neurosci, 2017, 12(4): 671-684. DOI: 10.1093/scan/nsw175.
[17]
SUN S L, XIAO S, GUO Z X, et al. Meta-analysis of cortical thickness reduction in adult schizophrenia[J/OL]. J Psychiatry Neurosci, 2023, 48(6): E461-E470 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/38123240/. DOI: 10.1503/jpn.230081.
[18]
WU Y J, WU N, HUANG X, et al. Evidence of cortical thickness reduction and disconnection in high myopia[J/OL]. Sci Rep, 2020, 10(1): 16239 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/33004887/. DOI: 10.1038/s41598-020-73415-3.
[19]
PLANK T, BENKOWITSCH E M A, BEER A L, et al. Cortical thickness related to compensatory viewing strategies in patients with macular degeneration[J/OL]. Front Neurosci, 2021, 15: 718737 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/34658765/. DOI: 10.3389/fnins.2021.718737.
[20]
ALEXANDER A L, LEE J E, LAZAR M, et al. Diffusion tensor imaging of the brain[J]. Neurotherapeutics, 2007, 4(3): 316-329. DOI: 10.1016/j.nurt.2007.05.011.
[21]
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[22]
KAMIYA K, HORI M, AOKI S. NODDI in clinical research[J/OL]. J Neurosci Methods, 2020, 346: 108908 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/32814118/. DOI: 10.1016/j.jneumeth.2020.108908.
[23]
PASTERNAK O, SOCHEN N, GUR Y, et al. Free water elimination and mapping from diffusion MRI[J]. Magn Reson Med, 2009, 62(3): 717-730. DOI: 10.1002/mrm.22055.
[24]
GUAN X F, FAN G X, WU X B, et al. Diffusion tensor imaging studies of cervical spondylotic myelopathy: a systemic review and meta-analysis[J/OL]. PLoS One, 2015, 10(2): e0117707 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/25671624/. DOI: 10.1371/journal.pone.0117707.
[25]
LIU X, WEI Z P, CHEN L T, et al. Effects of 3-month CPAP therapy on brain structure in obstructive sleep apnea: a diffusion tensor imaging study[J/OL]. Front Neurol, 2022, 13: 913193 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/36071900/. DOI: 10.3389/fneur.2022.913193.
[26]
WALLER R, DOTTERER H L, MURRAY L, et al. White-matter tract abnormalities and antisocial behavior: a systematic review of diffusion tensor imaging studies across development[J/OL]. Neuroimage Clin, 2017, 14: 201-215 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/28180079/. DOI: 10.1016/j.nicl.2017.01.014.
[27]
ZHANG M X, CHEN M J, TANG L Y, et al. Altered white matter integrity in patients with retinal vein occlusion: a diffusion tensor imaging and tract-based spatial statistics study[J/OL]. Dis Markers, 2022, 2022: 9647706 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/35251379/. DOI: 10.1155/2022/9647706.
[28]
WANG L, FAN K, ZHANG Y Q, et al. Quantitative assessment of optic nerve in patients with Leber's hereditary optic neuropathy using reduced field-of-view diffusion tensor imaging[J/OL]. Eur J Radiol, 2017, 93: 24-29 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/28668421/. DOI: 10.1016/j.ejrad.2017.05.025.
[29]
ZHANG J H, WANG L, DING H, et al. Abnormal large-scale structural rich club organization in Leber's hereditary optic neuropathy[J/OL]. Neuroimage Clin, 2021, 30: 102619 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/33752075/. DOI: 10.1016/j.nicl.2021.102619.
[30]
LING M, ZHOU J, PANG X Q, et al. White matter microstructural abnormalities of the visual pathway in type 2 diabetes mellitus: a generalized Q-sampling imaging study[J/OL]. Acad Radiol, 2022, 29(Suppl 3): S166-S174 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/34930656/. DOI: 10.1016/j.acra.2021.10.021.
[31]
JENSEN J H, HELPERN J A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biomed, 2010, 23(7): 698-710. DOI: 10.1002/nbm.1518.
[32]
FIEREMANS E, JENSEN J H, HELPERN J A. White matter characterization with diffusional kurtosis imaging[J]. Neuroimage, 2011, 58(1): 177-188. DOI: 10.1016/j.neuroimage.2011.06.006.
[33]
MARRALE M, COLLURA G, BRAI M, et al. Physics, techniques and review of neuroradiological applications of diffusion kurtosis imaging (DKI)[J]. Clin Neuroradiol, 2016, 26(4): 391-403. DOI: 10.1007/s00062-015-0469-9.
[34]
ZHANG H J, LI Q, LIU L, et al. Altered microstructure of cerebral gray matter in neuromyelitis optica spectrum disorder-optic neuritis: a DKI study[J/OL]. Front Neurosci, 2021, 15: 738913 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/34987355/. DOI: 10.3389/fnins.2021.738913.
[35]
LU P, HONG R J, TIAN G H, et al. Diffusional kurtosis imaging in differentiating nonarteritic anterior ischemic optic neuropathy from acute optic neuritis[J]. Neuroradiology, 2024, 66(5): 797-807. DOI: 10.1007/s00234-024-03301-6.
[36]
WANG H H, WEN H W, LI J, et al. Characterization of brain microstructural abnormalities in high myopia patients: a preliminary diffusion kurtosis imaging study[J]. Korean J Radiol, 2021, 22(7): 1142-1151. DOI: 10.3348/kjr.2020.0178.
[37]
SANTANA C P, DE CARVALHO E A, RODRIGUES I D, et al. Rs-fMRI and machine learning for ASD diagnosis: a systematic review and meta-analysis[J/OL]. Sci Rep, 2022, 12(1): 6030 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/35411059/. DOI: 10.1038/s41598-022-09821-6.
[38]
MARAPIN R S, VAN DER HORN H J, MADELEIN VAN DER STOUWE A M M, et al. Altered brain connectivity in hyperkinetic movement disorders: a review of resting-state fMRI[J/OL]. Neuroimage Clin, 2023, 37: 103302 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/36669351/. DOI: 10.1016/j.nicl.2022.103302.
[39]
OGAWA S, LEE T M, KAY A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc Natl Acad Sci USA, 1990, 87(24): 9868-9872. DOI: 10.1073/pnas.87.24.9868.
[40]
KROLL H, ZAHARCHUK G, CHRISTEN T, et al. Resting-state BOLD MRI for perfusion and ischemia[J]. Top Magn Reson Imaging, 2017, 26(2): 91-96. DOI: 10.1097/RMR.0000000000000119.
[41]
HUANG X, WEN Z, QI C X, et al. Dynamic changes of amplitude of low-frequency fluctuations in patients with diabetic retinopathy[J/OL]. Front Neurol, 2021, 12: 611702 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/33643197/. DOI: 10.3389/fneur.2021.611702.
[42]
LIU Q Y, PAN Y C, SHU H Y, et al. Brain activity in age-related macular degeneration patients from the perspective of regional homogeneity: a resting-state functional magnetic resonance imaging study[J/OL]. Front Aging Neurosci, 2022, 14: 865430 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/35615597/. DOI: 10.3389/fnagi.2022.865430.
[43]
DONG W J, SU T, LI C Q, et al. Altered brain network centrality in patients with retinal vein occlusion: a resting-state fMRI study[J]. Int J Ophthalmol, 2021, 14(11): 1741-1747. DOI: 10.18240/ijo.2021.11.14.
[44]
DAN H D, ZHOU F Q, HUANG X, et al. Altered intra- and inter-regional functional connectivity of the visual cortex in individuals with peripheral vision loss due to retinitis pigmentosa[J/OL]. Vision Res, 2019, 159: 68-75 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/30904614/. DOI: 10.1016/j.visres.2019.02.013.
[45]
ZHANG Y Q, ZHU F Y, TANG L Y, et al. Altered regional homogeneity in patients with diabetic vitreous hemorrhage[J]. World J Diabetes, 2020, 11(11): 501-513. DOI: 10.4239/wjd.v11.i11.501.
[46]
PATEL P, BARADARAN H, DELGADO D, et al. MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis[J]. Neuro Oncol, 2017, 19(1): 118-127. DOI: 10.1093/neuonc/now148.
[47]
ZHANG J, WANG Y L, WANG Y, et al. Perfusion magnetic resonance imaging in the differentiation between glioma recurrence and pseudoprogression: a systematic review, meta-analysis and meta-regression[J]. Quant Imaging Med Surg, 2022, 12(10): 4805-4822. DOI: 10.21037/qims-22-32.
[48]
TOGAO O, OBARA M, YAMASHITA K, et al. Arterial spin labeling-based MR angiography for cerebrovascular diseases: principles and clinical applications[J/OL]. J Magn Reson Imaging, 2023 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/37937684/. DOI: 10.1002/jmri.29119.
[49]
RUSSO A, SILVESTRO M, TESSITORE A, et al. Arterial spin labeling MRI applied to migraine: current insights and future perspectives[J/OL]. J Headache Pain, 2023, 24(1): 71 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/37322466/. DOI: 10.1186/s10194-023-01597-y.
[50]
HALLER S, ZAHARCHUK G, THOMAS D L, et al. Arterial spin labeling perfusion of the brain: emerging clinical applications[J]. Radiology, 2016, 281(2): 337-356. DOI: 10.1148/radiol.2016150789.
[51]
LINDNER T, BOLAR D S, ACHTEN E, et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging[J]. Magn Reson Med, 2023, 89(5): 2024-2047. DOI: 10.1002/mrm.29572.
[52]
DAN H D, SHEN Y, HUANG X, et al. Arterial spin labeling perfusion magnetic resonance imaging reveals resting cerebral blood flow alterations specific to retinitis pigmentosa patients[J]. Curr Eye Res, 2019, 44(12): 1353-1359. DOI: 10.1080/02713683.2019.1649702.
[53]
WANG L, JI Y, DING H, et al. Abnormal cerebral blood flow in patients with Leber's hereditary optic neuropathy[J]. Brain Imaging Behav, 2023, 17(5): 471-480. DOI: 10.1007/s11682-023-00775-5.
[54]
HUANG X, WEN Z, TONG Y, et al. Altered resting cerebral blood flow specific to patients with diabetic retinopathy revealed by arterial spin labeling perfusion magnetic resonance imaging[J]. Acta Radiol, 2021, 62(4): 524-532. DOI: 10.1177/0284185120932391.

PREV Research progress of multimodal MRI radiomics and deep learning in glioma
NEXT Progress of artificial intelligence application in high-resolution magnetic resonance angiography of head and neck atherosclerotic plaque
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn