Share:
Share this content in WeChat
X
Review
Progress of artificial intelligence application in high-resolution magnetic resonance angiography of head and neck atherosclerotic plaque
LIU Jie  OUYANG Feng  LÜ Lianjiang  XU Zihe  ZENG Xianjun 

Cite this article as: LIU J, OUYANG F, LÜ L J, et al. Progress of artificial intelligence application in high-resolution magnetic resonance angiography of head and neck atherosclerotic plaque[J]. Chin J Magn Reson Imaging, 2024, 15(7): 179-183. DOI:10.12015/issn.1674-8034.2024.07.030.


[Abstract] Currently, Atherosclerosis of the head and neck is the leading cause of ischemic stroke in Asian populations, and stroke patients often face serious prognosis problems. With the rapid development of artificial intelligence (AI) in recent years, and the extensive research and application of imaging histology and deep learning in medical imaging, AI has an important value in disease detection and accurate assessment. In this paper, we reviewed the research progress on plaque segmentation, clear plaque properties, and corresponding cerebrovascular event prediction of AI in high resolution magnetic resonance-vessel wall imaging (HR-VWI), aiming to introduce the current development status and problems faced by AI in this disease in recent years, and provide research direction for stratified stroke risk assessment and individualized treatment in patients with atherosclerosis.
[Keywords] artificial intelligence;magnetic resonance imaging;atherosclerosis;radiomics;deep learning

LIU Jie   OUYANG Feng   LÜ Lianjiang   XU Zihe   ZENG Xianjun*  

Department of Imaging, the First Affiliated Hospital of Nanchang University, Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang 330006, China

Corresponding author: ZENG X J, E-mail: xianjun-zeng@126.com

Conflicts of interest   None.

Received  2024-02-28
Accepted  2024-06-06
DOI: 10.12015/issn.1674-8034.2024.07.030
Cite this article as: LIU J, OUYANG F, LÜ L J, et al. Progress of artificial intelligence application in high-resolution magnetic resonance angiography of head and neck atherosclerotic plaque[J]. Chin J Magn Reson Imaging, 2024, 15(7): 179-183. DOI:10.12015/issn.1674-8034.2024.07.030.

[1]
FEIGIN V L, KRISHNAMURTHI R V, PARMAR P, et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: the GBD 2013 study[J]. Neuroepidemiology, 2015, 45(3): 161-176. DOI: 10.1159/000441085.
[2]
XIAO J Y, PADRICK M M, JIANG T, et al. Acute ischemic stroke versus transient ischemic attack: differential plaque morphological features in symptomatic intracranial atherosclerotic lesions[J/OL]. Atherosclerosis, 2021, 319: 72-78 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/33486353/. DOI: 10.1016/j.atherosclerosis.2021.01.002.
[3]
WANG Y J, ZHAO X Q, LIU L P, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese Intracranial Atherosclerosis (CICAS) Study[J]. Stroke, 2014, 45(3): 663-669. DOI: 10.1161/STROKEAHA.113.003508.
[4]
KIM Y D, CHA M J, KIM J, et al. Increases in cerebral atherosclerosis according to CHADS2 scores in patients with stroke with nonvalvular atrial fibrillation[J]. Stroke, 2011, 42(4): 930-934. DOI: 10.1161/STROKEAHA.110.602987.
[5]
HAMET P, TREMBLAY J. Artificial intelligence in medicine[J/OL]. Metabolism, 2017, 69: S36-S40 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/28126242/. DOI: 10.1016/j.metabol.2017.01.011.
[6]
KANG D W, KIM D Y, KIM J, et al. Emerging concept of intracranial arterial diseases: the role of high resolution vessel wall MRI[J]. J Stroke, 2024, 26(1): 26-40. DOI: 10.5853/jos.2023.02481.
[7]
SUI Y, SUN J L, CHEN Y, et al. Multimodal MRI study of the relationship between plaque characteristics and hypoperfusion in patients with transient ischemic attack[J/OL]. Front Neurol, 2023, 14: 1242923 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/37840913/. DOI: 10.3389/fneur.2023.1242923.
[8]
CHOI Y J, JUNG S C, LEE D H. Vessel wall imaging of the intracranial and cervical carotid arteries[J]. J Stroke, 2015, 17(3): 238-255. DOI: 10.5853/jos.2015.17.3.238.
[9]
TANDON V, SENTHILVELAN S, SREEDHARAN S E, et al. High-resolution MR vessel wall imaging in determining the stroke aetiology and risk stratification in isolated middle cerebral artery disease[J]. Neuroradiology, 2022, 64(8): 1569-1577. DOI: 10.1007/s00234-021-02891-9.
[10]
YAN J, WANG X F. Unsupervised and semi-supervised learning: the next frontier in machine learning for plant systems biology[J]. Plant J, 2022, 111(6): 1527-1538. DOI: 10.1111/tpj.15905.
[11]
CHEN Y, LUO Y, HUANG W, et al. Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B[J/OL]. Comput Biol Med, 2017, 89: 18-23 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/28779596/. DOI: 10.1016/j.compbiomed.2017.07.012.
[12]
SRINIVAS S, YOUNG A J. Machine learning and artificial intelligence in surgical research[J]. Surg Clin North Am, 2023, 103(2): 299-316. DOI: 10.1016/j.suc.2022.11.002.
[13]
MATTEUCCI G, PIASINI E, ZOCCOLAN D. Unsupervised learning of mid-level visual representations[J/OL]. Curr Opin Neurobiol, 2024, 84: 102834 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/38154417/. DOI: 10.1016/j.conb.2023.102834.
[14]
XUAN P, ZHANG X W, ZHANG Y, et al. Multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction[J/OL]. Brief Bioinform, 2022, 23(5): bbac120 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/35514190/. DOI: 10.1093/bib/bbac120.
[15]
LIN A. Artificial intelligence for high-risk plaque detection on carotid CT angiography[J/OL]. Atherosclerosis, 2023, 366: 40-41 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/36682983/. DOI: 10.1016/j.atherosclerosis.2023.01.006.
[16]
THOMPSON A C, JAMMAL A A, MEDEIROS F A. A review of deep learning for screening, diagnosis, and detection of glaucoma progression[J/OL]. Transl Vis Sci Technol, 2020, 9(2): 42 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/32855846/. DOI: 10.1167/tvst.9.2.42.
[17]
WAGNER M W, NAMDAR K, BISWAS A, et al. Radiomics, machine learning, and artificial intelligence-what the neuroradiologist needs to know[J]. Neuroradiology, 2021, 63(12): 1957-1967. DOI: 10.1007/s00234-021-02813-9.
[18]
MCBEE M P, AWAN O A, COLUCCI A T, et al. Deep learning in radiology[J]. Acad Radiol, 2018, 25(11): 1472-1480. DOI: 10.1016/j.acra.2018.02.018.
[19]
WANG M Q, ZHANG L Y, YU H X, et al. A deep learning network based on CNN and sliding window LSTM for spike sorting[J/OL]. Comput Biol Med, 2023, 159: 106879 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/37080004/. DOI: 10.1016/j.compbiomed.2023.106879.
[20]
LI Z W, LIU F, YANG W J, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE Trans Neural Netw Learn Syst, 2022, 33(12): 6999-7019. DOI: 10.1109/TNNLS.2021.3084827.
[21]
HATT M, LE REST C C, TIXIER F, et al. Radiomics: data are also images[J/OL]. J Nucl Med, 2019, 60(suppl 2): 38S-44S [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/31481588/. DOI: 10.2967/jnumed.118.220582.
[22]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[23]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[24]
CHEN Y F, CHEN Z J, LIN Y Y, et al. Stroke risk study based on deep learning-based magnetic resonance imaging carotid plaque automatic segmentation algorithm[J/OL]. Front Cardiovasc Med, 2023, 10: 1101765 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/36910524/. DOI: 10.3389/fcvm.2023.1101765.
[25]
SABA L, YUAN C, HATSUKAMI T S, et al. Carotid artery wall imaging: perspective and guidelines from the ASNR vessel wall imaging study group and expert consensus recommendations of the American society of neuroradiology[J/OL]. AJNR Am J Neuroradiol, 2018, 39(2): E9-E31 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/29326139/. DOI: 10.3174/ajnr.A5488.
[26]
SHI F, YANG Q, GUO X H, et al. Intracranial vessel wall segmentation using convolutional neural networks[J]. IEEE Trans Biomed Eng, 2019, 66(10): 2840-2847. DOI: 10.1109/TBME.2019.2896972.
[27]
WAN L W, LI H X, ZHANG L, et al. Automated morphologic analysis of intracranial and extracranial arteries using convolutional neural networks[J/OL]. Br J Radiol, 2022, 95(1139): 20210031 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/36018822/. DOI: 10.1259/bjr.20210031.
[28]
WU J Y, XIN J M, YANG X F, et al. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI[J]. Med Phys, 2019, 46(12): 5544-5561. DOI: 10.1002/mp.13739.
[29]
WU J Y, XIN J M, YANG X F, et al. Segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black blood magnetic resonance imaging with multi-task learning[J]. Med Phys, 2024, 51(3): 1775-1797. DOI: 10.1002/mp.16728.
[30]
TIAN X, FANG H, LAN L F, et al. Risk stratification in symptomatic intracranial atherosclerotic disease with conventional vascular risk factors and cerebral haemodynamics[J]. Stroke Vasc Neurol, 2023, 8(1): 77-85. DOI: 10.1136/svn-2022-001606.
[31]
PRABHAKARAN S, LIEBESKIND D S, COTSONIS G, et al. Predictors of early infarct recurrence in patients with symptomatic intracranial atherosclerotic disease[J]. Stroke, 2021, 52(6): 1961-1966. DOI: 10.1161/STROKEAHA.120.032676.
[32]
YU Y N, LIU M W, VILLABLANCA J P, et al. Middle cerebral artery plaque hyperintensity on T2-weighted vessel wall imaging is associated with ischemic stroke[J/OL]. AJNR Am J Neuroradiol, 2019 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/31624115/. DOI: 10.3174/ajnr.a6260..
[33]
SHI Z, ZHU C C, DEGNAN A J, et al. Identification of high-risk plaque features in intracranial atherosclerosis: initial experience using a radiomic approach[J]. Eur Radiol, 2018, 28(9): 3912-3921. DOI: 10.1007/s00330-018-5395-1.
[34]
SHI Z, LI J, ZHAO M, et al. Quantitative histogram analysis on intracranial atherosclerotic plaques: a high-resolution magnetic resonance imaging study[J]. Stroke, 2020, 51(7): 2161-2169. DOI: 10.1161/STROKEAHA.120.029062.
[35]
ZHANG G L, FANG J C, WANG Z X, et al. Radiomics based on three-dimensional high-resolution MR vessel wall imaging for identification of culprit plaques in symptomatic patients with middle cerebral artery atherosclerosis[J]. Chin J Radiol, 2023, 57(1): 27-33. DOI: 10.3760/cma.j.cn112149-20220620-00529.
[36]
LI H X, LIU J, CHENG X Q, et al. Prediction of mixed ischemic stroke mechanism based on HR-MRI radiomics of intracranial arterial plaque[J]. Chin J Magn Reson Imag, 2023, 14(3): 6-11, 27. DOI: 10.12015/issn.1674-8034.2023.03.002.
[37]
WANG Y, HOU X W, CHEN H S, et al. Prediction of the risk of recurrent ischemic stroke based on intracranial plaque radiomics with traditional biomarkers[J]. Chin J Magn Reson Imag, 2023, 14(8): 1-9. DOI: 10.12015/issn.1674-8034.2023.08.001.
[38]
TANG M, GAO J, MA N E, et al. Radiomics nomogram for predicting stroke recurrence in symptomatic intracranial atherosclerotic stenosis[J/OL]. Front Neurosci, 2022, 16: 851353 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/35495035/. DOI: 10.3389/fnins.2022.851353.
[39]
SONG H Z, YANG S F, YU B Y, et al. CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study[J/OL]. Cancer Imaging, 2023, 23(1): 89 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/37723572/. DOI: 10.1186/s40644-023-00609-z.
[40]
AJOOLABADY A, WANG S Y, KROEMER G, et al. Targeting autophagy in ischemic stroke: from molecular mechanisms to clinical therapeutics[J/OL]. Pharmacol Ther, 2021, 225: 107848 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/33823204/. DOI: 10.1016/j.pharmthera.2021.107848.
[41]
ALRUWAILI R, AL-KURAISHY H M, ALRUWAILI M, et al. The potential therapeutic effect of phosphodiesterase 5 inhibitors in the acute ischemic stroke (AIS)[J]. Mol Cell Biochem, 2024, 479(5): 1267-1278. DOI: 10.1007/s11010-023-04793-1.
[42]
ARUL S, GHOZY S, MEREUTA O M, et al. Metabolite signature in acute ischemic stroke thrombi: a systematic review[J]. J Thromb Thrombolysis, 2023, 56(4): 594-602. DOI: 10.1007/s11239-023-02869-9.
[43]
BIOSE I J, OREMOSU J, BHATNAGAR S, et al. Promising cerebral blood flow enhancers in acute ischemic stroke[J]. Transl Stroke Res, 2023, 14(6): 863-889. DOI: 10.1007/s12975-022-01100-w.
[44]
THEOFILATOS K, STOJKOVIC S, HASMAN M, et al. Proteomic atlas of atherosclerosis: the contribution of proteoglycans to sex differences, plaque phenotypes, and outcomes[J]. Circ Res, 2023, 133(7): 542-558. DOI: 10.1161/CIRCRESAHA.123.322590.
[45]
LIU J H. Clinical study on the evaluation of carotid endarterectomy for the improvement of blood perfusion in carotid artery near occlusion and the exploration and application of imaging evaluation technology for the stability of carotid plaque[D].Beijing: Peking Union Medical College, 2022. DOI: 10.27648/d.cnki.gzxhu.2022.000408.
[46]
SUN J M, SINGH P, SHAMI A, et al. Spatial transcriptional mapping reveals site-specific pathways underlying human atherosclerotic plaque rupture[J]. J Am Coll Cardiol, 2023, 81(23): 2213-2227. DOI: 10.1016/j.jacc.2023.04.008.
[47]
LI W, LUO J C, PENG F D, et al. Spatial metabolomics identifies lipid profiles of human carotid atherosclerosis[J/OL]. Atherosclerosis, 2023, 364: 20-28 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/36459728/. DOI: 10.1016/j.atherosclerosis.2022.11.019.
[48]
TOMAS L, EDSFELDT A, MOLLET I G, et al. Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques[J]. Eur Heart J, 2018, 39(24): 2301-2310. DOI: 10.1093/eurheartj/ehy124.
[49]
LI W, BAI X S, HAO J H, et al. Thrombosis origin identification of cardioembolism and large artery atherosclerosis by distinct metabolites[J]. J Neurointerv Surg, 2023, 15(7): 701-707. DOI: 10.1136/neurintsurg-2022-019047.
[50]
BOUSQUET C, BELTRAMIN D. Machine learning in medicine: to explain, or not to explain, that is the question[J/OL]. Stud Health Technol Inform, 2022, 294: 114-115[2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/35612027/. DOI: 10.3233/SHTI220407.
[51]
CROMBÉ A, SPINNATO P, ITALIANO A, et al. Radiomics and artificial intelligence for soft-tissue sarcomas: current status and perspectives[J]. Diagn Interv Imaging, 2023, 104(12): 567-583. DOI: 10.1016/j.diii.2023.09.005.
[52]
KIM H, PARK C M, LEE M, et al. Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra- and inter-reader variability and inter-reconstruction algorithm variability[J/OL]. PLoS One, 2016, 11(10): e0164924 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/27741289/. DOI: 10.1371/journal.pone.0164924.
[53]
YANG F, DOGAN N, STOYANOVA R, et al. Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: a simulation study utilizing ground truth[J/OL]. Phys Med, 2018, 50: 26-36 [2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/29891091/. DOI: 10.1016/j.ejmp.2018.05.017.

PREV Research progress on multimodal MRI in central nervous system changes induced by fundus diseases
NEXT From medical image to clinical diagnosis and treatment: Advances in cardiovascular magnetic resonance in 2023
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn