Share:
Share this content in WeChat
X
Review
From medical image to clinical diagnosis and treatment: Advances in cardiovascular magnetic resonance in 2023
LIAN Xinqiao  ZHANG Huaying  ZHAO Shihua  LU Minjie 

Cite this article as: LIAN X Q, ZHANG H Y, ZHAO S H, et al. From medical image to clinical diagnosis and treatment: Advances in cardiovascular magnetic resonance in 2023[J]. Chin J Magn Reson Imaging, 2024, 15(7): 184-190, 215. DOI:10.12015/issn.1674-8034.2024.07.031.


[Abstract] Cardiovascular magnetic resonance (CMR) offers the advantages of non-invasive, radiation-free and multi-parameter imaging. It enables a "one-stop" examination of cardiac morphology, function, and histology, playing an irreplaceable role in the precision medicine of cardiovascular diseases. In 2023, significant advancements are made in CMR research: technologies such as tissue characterization imaging and myocardial strain analysis have been continually innovated, exploring more clinical indications and gradually achieving standardized application and translation. The applications of CMR in non-ischemic heart disease and ischemic heart disease have been highly emphasized in the new guidelines, and high-quality evidence has continually emerged, encouraging its greater involvement in cardiovascular clinical management. This review will systematically summarize the representative achievements in both technology and clinical application, aiming to provide the latest and effective guidance for current medical practice.
[Keywords] magnetic resonance imaging;cardiovascular magnetic resonance;tissue characterization imaging;myocardial strain;four-dimensional flow magnetic resonance imaging;non-ischemic heart disease;ischemic heart disease

LIAN Xinqiao1, 2   ZHANG Huaying1   ZHAO Shihua1   LU Minjie1, 3*  

1 Department of Magnetic Resonance Imaging, Peking Union Medical College & Chinese Academy of Medical Sciences, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing 100037, China

2 Department of Clinical Medicine, Capital Medical University, Beijing 100069, China

3 Key Laboratory of Cardiovascular Imaging, Chinese Academy of Medical Sciences, Beijing 100037, China

Corresponding author: LU M J, E-mail: coolkan@163.com

Conflicts of interest   None.

Received  2024-03-15
Accepted  2024-06-25
DOI: 10.12015/issn.1674-8034.2024.07.031
Cite this article as: LIAN X Q, ZHANG H Y, ZHAO S H, et al. From medical image to clinical diagnosis and treatment: Advances in cardiovascular magnetic resonance in 2023[J]. Chin J Magn Reson Imaging, 2024, 15(7): 184-190, 215. DOI:10.12015/issn.1674-8034.2024.07.031.

[1]
MENSAH G A, FUSTER V, MURRAY C J L, et al. Global burden of cardiovascular diseases and risks, 1990-2022[J]. J Am Coll Cardiol, 2023, 82(25): 2350-2473. DOI: 10.1016/j.jacc.2023.11.007.
[2]
VON KNOBELSDORFF-BRENKENHOFF F, SCHULZ-MENGER J. Cardiovascular magnetic resonance in the guidelines of the European Society of Cardiology: a comprehensive summary and update[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 42 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/37482604/. DOI: 10.1186/s12968-023-00950-z.
[3]
LU M J, ZHU L Y, PRASAD S K, et al. Magnetic resonance imaging mimicking pathology detects myocardial fibrosis: a door to hope for improving the whole course management[J]. Sci Bull, 2023, 68(9): 864-867. DOI: 10.1016/j.scib.2023.04.014.
[4]
SI D Y, WU Y F, XIAO J J, et al. Three-dimensional high-resolution dark-blood late gadolinium enhancement imaging for improved atrial scar evaluation[J/OL]. Radiology, 2023, 307(5): e222032 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/37278633/. DOI: 10.1148/radiol.222032.
[5]
YIN G, DONG Z X, YANG X L, et al. T 1 rho mapping for assessment of myocardial fibrosis in hypertrophic cardiomyopathy[J]. Chin J Radiol, 2023, 57(10): 1087-1093. DOI: 10.3760/cma.j.cn112149-20220927-00778.
[6]
BUSTIN A, PINEAU X, SRIDI S, et al. Assessment of myocardial injuries in ischaemic and non-ischaemic cardiomyopathies using magnetic resonance T1-rho mapping[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(4): 548-557. DOI: 10.1093/ehjci/jead319.
[7]
DONG Z X, MA X, WANG J X, et al. Incremental diagnostic value of right ventricular strain analysis in arrhythmogenic right ventricular cardiomyopathy[J/OL]. J Am Heart Assoc, 2024, 13(1): e031403 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/38156506/. DOI: 10.1161/JAHA.123.031403.
[8]
HALFMANN M C, ALTMANN S, SCHOEPF U J, et al. Left atrial strain correlates with severity of cardiac involvement in Anderson-Fabry disease[J]. Eur Radiol, 2023, 33(3): 2039-2051. DOI: 10.1007/s00330-022-09183-7.
[9]
KRITTANAWONG C, MAITRA N S, HASSAN VIRK H U, et al. Normal ranges of right atrial strain: a systematic review and meta-analysis[J]. JACC Cardiovasc Imaging, 2023, 16(3): 282-294. DOI: 10.1016/j.jcmg.2022.06.022.
[10]
ZHONG L, LENG S, ALABED S, et al. Pulmonary artery strain predicts prognosis in pulmonary arterial hypertension[J]. JACC Cardiovasc Imaging, 2023, 16(8): 1022-1034. DOI: 10.1016/j.jcmg.2023.02.007.
[11]
PU L T, DIAO Y K, WANG J, et al. The predictive value of fast semi-automated left atrial long-axis strain analysis for atrial fibrillation in hypertrophic cardiomyopathy[J]. Eur Radiol, 2023, 33(1): 312-320. DOI: 10.1007/s00330-022-09020-x.
[12]
BARBAROUX H, KUNZE K P, NEJI R, et al. Automated segmentation of long and short axis DENSE cardiovascular magnetic resonance for myocardial strain analysis using spatio-temporal convolutional neural networks[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 16 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/36991474/. DOI: 10.1186/s12968-023-00927-y.
[13]
TRENTI C, FEDAK P W M, WHITE J A, et al. Oscillatory shear stress is elevated in patients with bicuspid aortic valve and aortic regurgitation: a 4D flow cardiovascular magnetic resonance cross-sectional study[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(3): 404-412. DOI: 10.1093/ehjci/jead283.
[14]
WEISS E K, JARVIS K, MAROUN A, et al. Systolic reverse flow derived from 4D flow cardiovascular magnetic resonance in bicuspid aortic valve is associated with aortic dilation and aortic valve stenosis: a cross sectional study in 655 subjects[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 3 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/36698129/. DOI: 10.1186/s12968-022-00906-9.
[15]
PENG K, ZHANG X L, HUA T, et al. Evaluation of left ventricular blood flow kinetic energy in patients with hypertension by four-dimensional flow cardiovascular magnetic resonance imaging: a preliminary study[J]. Eur Radiol, 2023, 33(7): 4676-4687. DOI: 10.1007/s00330-023-09449-8.
[16]
ASHKIR Z, JOHNSON S, LEWANDOWSKI A J, et al. Novel insights into diminished cardiac reserve in non-obstructive hypertrophic cardiomyopathy from four-dimensional flow cardiac magnetic resonance component analysis[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(9): 1192-1200. DOI: 10.1093/ehjci/jead074.
[17]
ZHAO X D, TAN R S, GARG P, et al. Age- and sex-specific reference values of biventricular flow components and kinetic energy by 4D flow cardiovascular magnetic resonance in healthy subjects[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 50 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/37718441/. DOI: 10.1186/s12968-023-00960-x.
[18]
BISSELL M M, RAIMONDI F, AIT ALI L, et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 40 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/37474977/. DOI: 10.1186/s12968-023-00942-z.
[19]
PARK S, CHEN L Y, TOWNSEND J, et al. Simultaneous multi-VENC and simultaneous multi-slice phase contrast magnetic resonance imaging[J]. IEEE Trans Med Imaging, 2020, 39(3): 742-752. DOI: 10.1109/TMI.2019.2934422.
[20]
ROOIJAKKERS M J P, VAN WELY M H, HABETS J, et al. A novel approach in the assessment of paravalvular regurgitation after transcatheter aortic valve replacement using cardiac magnetic resonance imaging[J/OL]. Eur Heart J Cardiovasc Imaging, 2023, 24(Supplement_1): jead119.338 [2024-03-14]. https://academic.oup.com/ehjcimaging/article/24/Supplement_1/jead119.338/7198713. DOI: 10.1093/ehjci/jead119.338.
[21]
BUSTAMANTE M, VIOLA F, ENGVALL J, et al. Automatic time-resolved cardiovascular segmentation of 4D flow MRI using deep learning[J]. J Magn Reson Imaging, 2023, 57(1): 191-203. DOI: 10.1002/jmri.28221.
[22]
ROTHENBERGER S M, PATEL N M, ZHANG J C, et al. Automatic 4D flow MRI segmentation using the standardized difference of means velocity[J]. IEEE Trans Med Imaging, 2023, 42(8): 2360-2373. DOI: 10.1109/TMI.2023.3251734.
[23]
CUI Y D, ZHENG C, GU S S, et al. Assessment of myocardial viability in ischemic heart disease by integrated PET/MR[J]. Chin J Nucl Med Mol Imag, 2023, 43(9): 513-517. DOI: 10.3760/cma.j.cn321828-20220609-00182.
[24]
ZHANG M, QUAN W W, ZHU T Q, et al. 68Ga]Ga-DOTA-FAPI-04 PET/MR in patients with acute myocardial infarction: potential role of predicting left ventricular remodeling[J]. Eur J Nucl Med Mol Imaging, 2023, 50(3): 839-848. DOI: 10.1007/s00259-022-06015-0.
[25]
WANG M Y. Research status and development prospect of magnetic resonance imaging artificial intelligence[J]. Chin J Magn Reson Imag, 2023, 14(3): 1-5. DOI: 10.12015/issn.1674-8034.2023.03.001.
[26]
OHTA Y, TATEISHI E, MORITA Y, et al. Optimization of null point in Look-Locker images for myocardial late gadolinium enhancement imaging using deep learning and a smartphone[J]. Eur Radiol, 2023, 33(7): 4688-4697. DOI: 10.1007/s00330-023-09465-8.
[27]
WU X, DENG L P, LI W J, et al. Deep learning-based acceleration of compressed sensing for noncontrast-enhanced coronary magnetic resonance angiography in patients with suspected coronary artery disease[J]. J Magn Reson Imaging, 2023, 58(5): 1521-1530. DOI: 10.1002/jmri.28653.
[28]
YOON S, NAKAMORI S, AMYAR A, et al. Accelerated cardiac MRI cine with use of resolution enhancement generative adversarial inline neural network[J/OL]. Radiology, 2023, 307(5): e222878 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/37249435/. DOI: 10.1148/radiol.222878.
[29]
MARTIN-ISLA C, CAMPELLO V M, IZQUIERDO C, et al. Deep learning segmentation of the right ventricle in cardiac MRI: the M&Ms challenge[J]. IEEE J Biomed Health Inform, 2023, 27(7): 3302-3313. DOI: 10.1109/JBHI.2023.3267857.
[30]
PUJADAS E R, RAISI-ESTABRAGH Z, SZABO L, et al. Prediction of incident cardiovascular events using machine learning and CMR radiomics[J]. Eur Radiol, 2023, 33(5): 3488-3500. DOI: 10.1007/s00330-022-09323-z.
[31]
FAHMY A S, ROWIN E J, JAAFAR N, et al. Radiomics of late gadolinium enhancement reveals prognostic valueof myocardial scar heterogeneity in hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2024, 17(1): 16-27. DOI: 10.1016/j.jcmg.2023.05.003.
[32]
ARBELO E, PROTONOTARIOS A, GIMENO J R, et al. 2023 ESC Guidelines for the management of cardiomyopathies[J]. Eur Heart J, 2023, 44(37): 3503-3626. DOI: 10.1093/eurheartj/ehad194.
[33]
WANG J X, YANG S J, MA X, et al. Assessment of late gadolinium enhancement in hypertrophic cardiomyopathy improves risk stratification based on current guidelines[J]. Eur Heart J, 2023, 44(45): 4781-4792. DOI: 10.1093/eurheartj/ehad581.
[34]
KIAOS A, DASKALOPOULOS G N, KAMPERIDIS V, et al. Quantitative late gadolinium enhancement cardiac magnetic resonance and sudden death in hypertrophic cardiomyopathy: a meta-analysis[J]. JACC Cardiovasc Imaging, 2024, 17(5): 489-497. DOI: 10.1016/j.jcmg.2023.07.005.
[35]
YANG S J, ZHAO K K, YANG K, et al. Subendocardial involvement as an underrecognized LGE subtype related to adverse outcomes in hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2023, 16(9): 1163-1177. DOI: 10.1016/j.jcmg.2023.03.011.
[36]
JOY G, KELLY C I, WEBBER M, et al. Microstructural and microvascular phenotype of sarcomere mutation carriers and overt hypertrophic cardiomyopathy[J]. Circulation, 2023, 148(10): 808-818. DOI: 10.1161/CIRCULATIONAHA.123.063835.
[37]
HEYDARI B, SATRIANO A, JEROSCH-HEROLD M, et al. 3-dimensional strain analysis ofHypertrophic cardiomyopathy: insights from the NHLBI international HCM registry[J]. JACC Cardiovasc Imaging, 2023, 16(4): 478-491. DOI: 10.1016/j.jcmg.2022.10.005.
[38]
XU Z Q, WANG J, CHENG W, et al. Incremental significance of myocardial oedema for prognosis in hypertrophic cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(7): 876-884. DOI: 10.1093/ehjci/jead065.
[39]
LI S, WANG Y N, YANG W J, et al. Cardiac MRI risk stratification for dilated cardiomyopathy with left ventricular ejection fraction of 35% or higher[J/OL]. Radiology, 2023, 306(3): e213059 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/36318031/. DOI: 10.1148/radiol.213059.
[40]
LI Y J, XU Y W, LI W H, et al. Cardiac MRI to predict sudden cardiac death risk in dilated cardiomyopathy[J/OL]. Radiology, 2023, 307(3): e222552 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/36916890/. DOI: 10.1148/radiol.222552.
[41]
ZHOU D, ZHU L Y, WU W C, et al. A novel cardiac magnetic resonance-based personalized risk stratification model in dilated cardiomyopathy: a prospective study[J]. Eur Radiol, 2024, 34(6): 4053-4064. DOI: 10.1007/s00330-023-10415-7.
[42]
GAO Y, WANG H P, LIU M X, et al. Early detection of myocardial fibrosis in cardiomyopathy in the absence of late enhancement: role of T1 mapping and extracellular volume analysis[J]. Eur Radiol, 2023, 33(3): 1982-1991. DOI: 10.1007/s00330-022-09147-x.
[43]
IOANNOU A, PATEL R K, RAZVI Y, et al. Multi-imaging characterization of cardiac phenotype in different TypesofAmyloidosis[J]. JACC Cardiovasc Imaging, 2023, 16(4): 464-477. DOI: 10.1016/j.jcmg.2022.07.008.
[44]
IOANNOU A, PATEL R K, MARTINEZ-NAHARRO A, et al. Tracking multiorgan treatment response in systemic AL-amyloidosis with cardiac magnetic resonance derived extracellular volume mapping[J]. JACC Cardiovasc Imaging, 2023, 16(8): 1038-1052. DOI: 10.1016/j.jcmg.2023.02.019.
[45]
IOANNOU A, PATEL R K, MARTINEZ-NAHARRO A, et al. Tracking treatment response in cardiac light-chain amyloidosis with native T1 mapping[J]. JAMA Cardiol, 2023, 8(9): 848-852. DOI: 10.1001/jamacardio.2023.2010.
[46]
VIRANI S S, NEWBY L K, ARNOLD S V, et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: a report of the American heart association/american college of cardiology joint committee on clinical practice guidelines[J/OL]. Circulation, 2023, 148(9): e9-e119 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/37471501/. DOI: 10.1161/CIR.0000000000001168.
[47]
BYRNE R A, ROSSELLO X, COUGHLAN J J, et al. 2023 ESC Guidelines for the management of acute coronary syndromes[J]. Eur Heart J Acute Cardiovasc Care, 2024, 13(1): 55-161. DOI: 10.1093/ehjacc/zuad107.
[48]
ARAI A E, SCHULZ-MENGER J, SHAH D J, et al. Stress perfusion cardiac magnetic resonance vs SPECT imaging for detection of coronary artery disease[J]. J Am Coll Cardiol, 2023, 82(19): 1828-1838. DOI: 10.1016/j.jacc.2023.08.046.
[49]
RICCI F, KHANJI M Y, BISACCIA G, et al. Diagnostic and prognostic value of stress cardiovascular magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis[J]. JAMA Cardiol, 2023, 8(7): 662-673. DOI: 10.1001/jamacardio.2023.1290.
[50]
ZHAO S H, GUO W F, YAO Z F, et al. Fully automated pixel-wise quantitative CMR-myocardial perfusion with CMR-coronary angiography to detect hemodynamically significant coronary artery disease[J]. Eur Radiol, 2023, 33(10): 7238-7249. DOI: 10.1007/s00330-023-09689-8.
[51]
BAWASKAR P, THOMAS N, ISMAIL K, et al. Nonischemic or dual cardiomyopathy in patients with coronary artery disease[J]. Circulation, 2024, 149(11): 807-821. DOI: 10.1161/CIRCULATIONAHA.123.067032.
[52]
JONES R E, ZAIDI H A, HAMMERSLEY D J, et al. Comprehensive phenotypic characterization of late gadolinium enhancement predicts sudden cardiac death in coronary artery disease[J]. JACC Cardiovasc Imaging, 2023, 16(5): 628-638. DOI: 10.1016/j.jcmg.2022.10.020.
[53]
LIANG K T, BISACCIA G, LEO I, et al. CMR reclassifies the majority of patients with suspected MINOCA and non MINOCA[J]. Eur Heart J Cardiovasc Imaging, 2023, 25(1): 8-15. DOI: 10.1093/ehjci/jead182.
[54]
MILEVA N, PAOLISSO P, GALLINORO E, et al. Diagnostic and prognostic role of cardiac magnetic resonance in MINOCA: systematic review and meta-analysis[J]. JACC Cardiovasc Imaging, 2023, 16(3): 376-389. DOI: 10.1016/j.jcmg.2022.12.029.
[55]
BELTRAME J F. Comprehensive diagnostic assessmentin MINOCA[J]. JACC Cardiovasc Imag, 2023, 16(4): 533-535. DOI: 10.1016/j.jcmg.2022.12.018.
[56]
BERGAMASCHI L, FOÀ A, PAOLISSO P, et al. Prognostic role of early cardiac magnetic resonance in myocardial infarction with nonobstructive CoronaryArteries[J]. JACC Cardiovasc Imaging, 2024, 17(2): 149-161. DOI: 10.1016/j.jcmg.2023.05.016.
[57]
LI J H, ZHAO S H, LU M J. MR characteristics of myocardial injury in COVID-19[J]. Chin J Radiol, 2023, 57(12): 1378-1382. DOI: 10.3760/cma.j.cn112149-20230926-00237.
[58]
FERREIRA V M, PLEIN S, WONG T C, et al. Cardiovascular magnetic resonance for evaluation of cardiac involvement in COVID-19: recommendations by the Society for Cardiovascular Magnetic Resonance[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 21 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/36973744/. DOI: 10.1186/s12968-023-00933-0.
[59]
VIDULA M K, RAJEWSKA-TABOR J, CAO J J, et al. Myocardial injury on CMR in patients with COVID-19 and suspected cardiac involvement[J]. JACC Cardiovasc Imaging, 2023, 16(5): 609-624. DOI: 10.1016/j.jcmg.2022.10.021.
[60]
ARTICO J, SHIWANI H, MOON J C, et al. Myocardial involvement after hospitalization for COVID-19 complicated by troponin elevation: a prospective, multicenter, observational study[J]. Circulation, 2023, 147(5): 364-374. DOI: 10.1161/CIRCULATIONAHA.122.060632.
[61]
AJMONE MARSAN N, DELGADO V, SHAH D J, et al. Valvular heart disease: shifting the focus to the myocardium[J]. Eur Heart J, 2023, 44(1): 28-40. DOI: 10.1093/eurheartj/ehac504.
[62]
MALAHFJI M, CRUDO V, KAOLAWANICH Y, et al. Influence of cardiac remodeling on clinical outcomes in patients with AorticRegurgitation[J]. J Am Coll Cardiol, 2023, 81(19): 1885-1898. DOI: 10.1016/j.jacc.2023.03.001.
[63]
GUGLIELMO M, ARANGALAGE D, BONINO M A, et al. Additional value of cardiac magnetic resonance feature tracking parameters for the evaluation of the arrhythmic risk in patients with mitral valve prolapse[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 32 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/37316826/. DOI: 10.1186/s12968-023-00944-x.
[64]
WANG T K M, KOCYIGIT D, CHOI H, et al. Prognostic power of quantitative assessment of functional mitral regurgitation and myocardial scar quantification by cardiac magnetic resonance[J/OL]. Circ Cardiovasc Imaging, 2023, 16(8): e015134 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/37503633/. DOI: 10.1161/CIRCIMAGING.122.015134.
[65]
REINDL M, LECHNER I, HOLZKNECHT M, et al. Cardiac magnetic resonance imaging versus computed tomography to guide transcatheter aortic valve replacement: a randomized, open-label, noninferiority trial[J]. Circulation, 2023, 148(16): 1220-1230. DOI: 10.1161/CIRCULATIONAHA.123.066498.

PREV Progress of artificial intelligence application in high-resolution magnetic resonance angiography of head and neck atherosclerotic plaque
NEXT Research progress of MRI in the evaluation of neoadjuvant chemotherapy efficacy for triple-negative breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn