Share:
Share this content in WeChat
X
Review
Research progress of MRI in the evaluation of neoadjuvant chemotherapy efficacy for triple-negative breast cancer
LI Shunian  TAN Hongna 

Cite this article as: LI S N, TAN H N. Research progress of MRI in the evaluation of neoadjuvant chemotherapy efficacy for triple-negative breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(7): 191-195. DOI:10.12015/issn.1674-8034.2024.07.032.


[Abstract] Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by high heterogeneity and aggressiveness. Because of the absence of effective therapeutic targets, TNBC is insensitive to endocrine therapy and targeted therapy, resulting in a poor prognosis. Currently, neoadjuvant chemotherapy (NAC) is one of the standard treatment strategies for TNBC. Given the individual variances and tumor heterogeneity, TNBC patients' response to NAC varies significantly, leading to diverse treatment outcomes. Therefore, early and accurate assessment of NAC efficacy is crucial for formulating subsequent treatment plans and predicting prognosis for TNBC patients. Magnetic resonance imaging (MRI) is widely utilized for monitoring the effectiveness of tumor treatment due to its high resolution for soft tissue and quantitative imaging technology, enabling accurate depiction of changes in tumor parenchyma and its microenvironment. MRI-based radiomics can deeply explore the imaging characteristics of TNBC before and after NAC, providing more comprehensive tumor information for evaluating NAC efficacy. In recent years, researchers both domestically and internationally have conducted extensive studies on the evaluation of NAC efficacy in TNBC using radiomics. This article aims to review the clinical applications and research advancements of MRI in assessing the efficacy of NAC in TNBC patients, with the goal of providing insights for developing precise and personalized treatment approaches for these patients.
[Keywords] breast cancer;triple-negative breast cancer;magnetic resonance imaging;neoadjuvant chemotherapy;efficacy prediction

LI Shunian   TAN Hongna*  

Department of Medical Imaging, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China

Corresponding author: TAN H N, E-mail: natan2000@126.com

Conflicts of interest   None.

Received  2024-03-07
Accepted  2024-06-25
DOI: 10.12015/issn.1674-8034.2024.07.032
Cite this article as: LI S N, TAN H N. Research progress of MRI in the evaluation of neoadjuvant chemotherapy efficacy for triple-negative breast cancer[J]. Chin J Magn Reson Imaging, 2024, 15(7): 191-195. DOI:10.12015/issn.1674-8034.2024.07.032.

[1]
CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J, 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
[2]
YIN L, DUAN J J, BIAN X W, et al. Triple-negative breast cancer molecular subtyping and treatment progress[J/OL]. Breast Cancer Res, 2020, 22(1): 61 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/32517735/. DOI: 10.1186/s13058-020-01296-5.
[3]
TONG L, YU X L, WANG S, et al. Research progress on molecular subtyping and modern treatment of triple-negative breast cancer[J/OL]. Breast Cancer, 2023, 15: 647-658 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/37644916/. DOI: 10.2147/BCTT.S426121.
[4]
SHAO Z M, WU J, JIANG Z F, et al. Expert consensus on neoadjuvant treatment of breast cancer in China(2021 edition)[J]. China Oncol, 2022, 32(1): 80-89. DOI: 10.19401/j.cnki.1007-3639.2022.01.011.
[5]
PANICO C, FERRARA F, WOITEK R, et al. Staging breast cancer with MRI, theT. A key role in the neoadjuvant setting[J/OL]. Cancers, 2022, 14(23): 5786 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/36497265/. DOI: 10.3390/cancers14235786.
[6]
KODALI A, GADI V K. Preoperative systemic therapy for breast cancer[J]. Surg Clin North Am, 2023, 103(1): 201-217. DOI: 10.1016/j.suc.2022.08.017.
[7]
HUANG M, O'SHAUGHNESSY J, ZHAO J, et al. Association of pathologic complete response with long-term survival outcomes in triple-negative breast cancer: a meta-analysis[J]. Cancer Res, 2020, 80(24): 5427-5434. DOI: 10.1158/0008-5472.CAN-20-1792.
[8]
TOSS A, VENTURELLI M, CIVALLERO M, et al. Predictive factors for relapse in triple-negative breast cancer patients without pathological complete response after neoadjuvant chemotherapy[J/OL]. Front Oncol, 2022, 12: 1016295 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/36531080/. DOI: 10.3389/fonc.2022.1016295.
[9]
CORTAZAR P, ZHANG L J, UNTCH M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-172. DOI: 10.1016/S0140-6736(13)62422-8.
[10]
HOUVENAEGHEL G, NONNEVILLE A D, COHEN M, et al. Neoadjuvant chemotherapy for breast cancer: evolution of clinical practice in a French cancer center over 16 years and pathologic response rates according to tumor subtypes and clinical tumor size: retrospective cohort study[J]. J Surg Res, 2022, 5(3): 511-525. DOI: 10.26502/jsr.10020251.
[11]
ORTMANN O, BLOHMER J U, SIBERT N T, et al. Current clinical practice and outcome of neoadjuvant chemotherapy for early breast cancer: analysis of individual data from 94, 638 patients treated in 55 breast cancer centers[J]. J Cancer Res Clin Oncol, 2023, 149(3): 1195-1209. DOI: 10.1007/s00432-022-03938-x.
[12]
HOUVENAEGHEL G, DE NONNEVILLE A, COHEN M, et al. Neoadjuvant chemotherapy for breast cancer: Pathologic response rates but not tumor size, has an independent prognostic impact on survival[J/OL]. Cancer Med, 2024, 13(3): e6930 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/38327130/. DOI: 10.1002/cam4.6930.
[13]
REIG B, HEACOCK L, LEWIN A, et al. Role of MRI to assess response to neoadjuvant therapy for breast cancer[J/OL]. J Magn Reson Imaging, 2020, 52(6) [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/32227407/. DOI: 10.1002/jmri.27145.
[14]
CABALLO M, SANDERINK W B G, HAN L Y, et al. Four-dimensional machine learning radiomics for the pretreatment assessment of breast cancer pathologic complete response to neoadjuvant chemotherapy in dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2023, 57(1): 97-110. DOI: 10.1002/jmri.28273.
[15]
NEMETH A, CHAUDET P, LEPORQ B, et al. Multicontrast MRI-based radiomics for the prediction of pathological complete response to neoadjuvant chemotherapy in patients with early triple negative breast cancer[J]. MAGMA, 2021, 34(6): 833-844. DOI: 10.1007/s10334-021-00941-0.
[16]
MOHAMED R M, PANTHI B, ADRADA B, et al. Abstract P6-01-06: multi-parametric MRI-based radiomics models from tumor and peritumoral regions as potential predictors of treatment response to neoadjuvant systemic therapy in triple negative breast cancer patients[J/OL]. Cancer Res, 2023 [2024-03-06]. https://www.researchgate.net/publication/368980286_Abstract_P6-01-06_Multi-Parametric_MRI-Based_Radiomics_Models_from_Tumor_and_Peritumoral_Regions_as_Potential_Predictors_of_Treatment_Response_to_Neoadjuvant_Systemic_Therapy_in_Triple_Negative_Breast. DOI: 10.1158/1538-7445.sabcs22-p6-01-06.
[17]
ZHOU Z J, ADRADA B E, CANDELARIA R P, et al. Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI[J/OL]. Sci Rep, 2023, 13(1): 1171 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/36670144/. DOI: 10.1038/s41598-023-27518-2.
[18]
KATAOKA M, IIMA M, MIYAKE K K, et al. Multiparametric approach to breast cancer with emphasis on magnetic resonance imaging in the era of personalized breast cancer treatment[J]. Invest Radiol, 2024, 59(1): 26-37. DOI: 10.1097/RLI.0000000000001044.
[19]
MARINOVICH M L, SARDANELLI F, CIATTO S, et al. Early prediction of pathologic response to neoadjuvant therapy in breast cancer: systematic review of the accuracy of MRI[J]. Breast, 2012, 21(5): 669-677. DOI: 10.1016/j.breast.2012.07.006.
[20]
EISENHAUER E A, THERASSE P, BOGAERTS J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. DOI: 10.1016/j.ejca.2008.10.026.
[21]
LOO C E, STRAVER M E, RODENHUIS S, et al. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype[J]. J Clin Oncol, 2011, 29(6): 660-666. DOI: 10.1200/JCO.2010.31.1258.
[22]
PANTHI B, ADRADA B E, CANDELARIA R P, et al. Assessment of response to neoadjuvant systemic treatment in triple-negative breast cancer using functional tumor volumes from longitudinal dynamic contrast-enhanced MRI[J/OL]. Cancers, 2023, 15(4): 1025 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/36831368/. DOI: 10.3390/cancers15041025.
[23]
PARK J Y, KIM Y S, LEE S E. Breast MRI for evaluating residual tumor size following neoadjuvant chemotherapy: clinicopathologic factors and MRI imaging features affecting its accuracy[J]. Curr Med Imaging, 2022, 18(8): 876-882. DOI: 10.2174/1573405617666211117141057.
[24]
HYLTON N M, BLUME J D, BERNREUTER W K, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy: results from ACRIN 6657/I-SPY TRIAL[J]. Radiology, 2012, 263(3): 663-672. DOI: 10.1148/radiol.12110748.
[25]
PARTRIDGE S C, ZHANG Z, NEWITT D C, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial[J]. Radiology, 2018, 289(3): 618-627. DOI: 10.1148/radiol.2018180273.
[26]
LI W, ARASU V, NEWITT D C, et al. Effect of MR imaging contrast thresholds on prediction of neoadjuvant chemotherapy response in breast cancer subtypes: a subgroup analysis of the ACRIN 6657/I-SPY 1 TRIAL[J]. Tomography, 2016, 2(4): 378-387. DOI: 10.18383/j.tom.2016.00247.
[27]
MUSALL B C, ABDELHAFEZ A H, ADRADA B E, et al. Functional tumor volume by fast dynamic contrast-enhanced MRI for predicting neoadjuvant systemic therapy response in triple-negative breast cancer[J]. J Magn Reson Imaging, 2021, 54(1): 251-260. DOI: 10.1002/jmri.27557.
[28]
EOM H J, CHA J H, CHOI W J, et al. Predictive clinicopathologic and dynamic contrast-enhanced MRI findings for tumor response to neoadjuvant chemotherapy in triple-negative breast cancer[J/OL]. AJR Am J Roentgenol, 2017, 208(6): W225-W230 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/28350486/. DOI: 10.2214/AJR.16.17125.
[29]
LI X, HUANG W, HOLMES J H. Dynamic contrast-enhanced (DCE) MRI[J]. Magn Reson Imag Clin N Am, 2024, 32(1): 47-61. DOI: 10.1016/j.mric.2023.09.001.
[30]
LIANG X H, CHEN X F, YANG Z Q, et al. Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer[J/OL]. BMC Cancer, 2022, 22(1): 1250 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/36460972/. DOI: 10.1186/s12885-022-10315-x.
[31]
DRISIS S, METENS T, IGNATIADIS M, et al. Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy[J]. Eur Radiol, 2016, 26(5): 1474-1484. DOI: 10.1007/s00330-015-3948-0.
[32]
LIU S G, REN R M, CHEN Z Q, et al. Diffusion-weighted imaging in assessing pathological response of tumor in breast cancer subtype to neoadjuvant chemotherapy[J]. J Magn Reson Imaging, 2015, 42(3): 779-787. DOI: 10.1002/jmri.24843.
[33]
WANG X, ZHU L Y, ZHA X M, et al. Whole-lesion histogram analysis of apparent diffusion coefficient for the prediction of pathological complete response to neoadjuvant chemotherapy in different subtypes of breast cancer[J]. Chin J Radiol, 2020, 54(4): 338-344. DOI: 10.3760/cma.j.cn112149-20190522-00439.
[34]
HE X P, WANG Z S, ZHOU Y, et al. The value, diagnostic efficacy and clinical significance of functional magnetic resonance imaging in evaluating the efficacy of neoadjuvant chemotherapy in patients with triple negative breast cancer[J/OL]. Front Oncol, 2023, 13: 1132186 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/37064088/. DOI: 10.3389/fonc.2023.1132186.
[35]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[36]
ABDEL RAZEK A A K, ALKSAS A, SHEHATA M, et al. Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging[J/OL]. Insights Imaging, 2021, 12(1): 152 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/34676470/. DOI: 10.1186/s13244-021-01102-6.
[37]
TAGLIAFICO A S, PIANA M, SCHENONE D, et al. Overview of radiomics in breast cancer diagnosis and prognostication[J/OL]. Breast, 2020, 49: 74-80 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/31739125/. DOI: 10.1016/j.breast.2019.10.018.
[38]
BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
[39]
CORREDOR G, BHARADWAJ S, PATHAK T, et al. A review of AI-based radiomics and computational pathology approaches in triple-negative breast cancer: current applications and perspectives[J]. Clin Breast Cancer, 2023, 23(8): 800-812. DOI: 10.1016/j.clbc.2023.06.004.
[40]
PENG S Y, CHEN L Q, TAO J, et al. Radiomics analysis of multi-phase DCE-MRI in predicting tumor response to neoadjuvant therapy in breast cancer[J/OL]. Diagnostics, 2021, 11(11): 2086 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/34829433/. DOI: 10.3390/diagnostics11112086.
[41]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[42]
ADRADA B E, ABDELHAFEZ A H, MUSALL B C, et al. Abstract P6-02-03: quantitative apparent diffusion coefficient (ADC) radiomics of tumor and peritumoral regions as potential predictors of treatment response to neoadjuvant chemotherapy (NACT) in triple negative breast cancer (TNBC) patients[J/OL]. Cancer Res, 2020, 80(4_Supplement): P6-2-03-P6-0203 [2024-03-06]. https://www.researchgate.net/publication/340217846_Abstract_P6-02-03_Quantitative_apparent_diffusion_coefficient_ADC_radiomics_of_tumor_and_peritumoral_regions_as_potential_predictors_of_treatment_response_to_neoadjuvant_chemotherapy_NACT_in_triple_ne. DOI: 10.1158/1538-7445.sabcs19-p6-02-03.
[43]
HUSSAIN L, HUANG P, NGUYEN T, et al. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response[J/OL]. Biomed Eng Online, 2021, 20(1): 63 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/34183038/. DOI: 10.1186/s12938-021-00899-z.
[44]
HACKING S M, WINDSOR G, COOPER R, et al. A novel approach correlating pathologic complete response with digital pathology and radiomics in triple-negative breast cancer[J]. Breast Cancer, 2024, 31(3): 529-535. DOI: 10.1007/s12282-024-01544-y.
[45]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 57 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/28521821/. DOI: 10.1186/s13058-017-0846-1.
[46]
KHAN N, ADAM R, HUANG P, et al. Deep learning prediction of pathologic complete response in breast cancer using MRI and other clinical data: a systematic review[J]. Tomography, 2022, 8(6): 2784-2795. DOI: 10.3390/tomography8060232.
[47]
HUANG Y H, ZHU T, ZHANG X L, et al. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study[J/OL]. EClinicalMedicine, 2023, 58: 101899 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/37007742/. DOI: 10.1016/j.eclinm.2023.101899.

PREV From medical image to clinical diagnosis and treatment: Advances in cardiovascular magnetic resonance in 2023
NEXT Overview of MRI-based radiomics in breast cancer diagnosis and treatment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn