Share:
Share this content in WeChat
X
Review
Progress of quantitative prediction of the pathologic complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer with functional MRI
YANG Ao  ZHOU Peng 

Cite this article as: YANG A, ZHOU P. Progress of quantitative prediction of the pathologic complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer with functional MRI[J]. Chin J Magn Reson Imaging, 2024, 15(7): 210-215. DOI:10.12015/issn.1674-8034.2024.07.035.


[Abstract] Neoadjuvant chemoradiotherapy (nCRT) could reduce the local recurrence rate and improve the anus-preserving rate in patients with locally advanced rectal cancer (LARC). Some patients can achieve pathologic complete response (pCR) after nCRT, who will be take "watch and wait" strategy, and the patients could be avoid the complications caused by surgery. Functional magnetic resonance imaging (fMRI) can more accurately assess patients' response to nCRT than conventional MRI by reflecting changes in the structure and function of the tumor microenvironment at the cellular level. In this paper, we review the research progress on the quantitative evaluation of pCR after nCRT by diffusion-weighted imaging (DWI) and its derived sequences and perfusion imaging in patients with LARC, compare the advantages and disadvantages of DWI, intravoxel incoherent motion (IVIM), stretched exponential model (SEM), diffusion kurtosis imaging (DKI), dynamic contrast-enhanced MRI (DCE-MRI), and artificial intelligence-based prediction models in the current research, and provide clues and ideas for future research directions, aiming to provide relative reliable quantitative indicators for accurately identifying patients with LARC who achieve pCR.
[Keywords] locally advanced rectal cancer;neoadjuvant chemoradiotherapy;pathologic complete response;functional magnetic resonance imaging;magnetic resonance imaging

YANG Ao1, 2   ZHOU Peng2*  

1 School of Medicine University of Electronic Science and Technology of China, Chengdu 610051, China

2 Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China

Corresponding author: ZHOU P, E-mail: penghyzhou@126.com

Conflicts of interest   None.

Received  2024-03-01
Accepted  2024-06-26
DOI: 10.12015/issn.1674-8034.2024.07.035
Cite this article as: YANG A, ZHOU P. Progress of quantitative prediction of the pathologic complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer with functional MRI[J]. Chin J Magn Reson Imaging, 2024, 15(7): 210-215. DOI:10.12015/issn.1674-8034.2024.07.035.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
National Health Commission of the People′s Republic of China, Chinese Society of Oncology. Chinese Protocol of Diagnosis and Treatment of Colorectal Cancer (2023 edition)[J]. Chin J Surg, 2023, 61(8): 617-644. DOI: 10.3760/cma.j.cn112139-20230603-00222.
[3]
KASI A, ABBASI S, HANDA S, et al. Total neoadjuvant therapy vs standard therapy in locally advanced rectal cancer: a systematic review and meta-analysis[J/OL]. JAMA Netw Open, 2020, 3(12): e2030097 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/33326026/. DOI: 10.1001/jamanetworkopen.2020.30097.
[4]
KANG B H, SONG C, KANG S B, et al. Nomogram for predicting the pathological tumor response from pre-treatment clinical characteristics in rectal cancer[J]. Anticancer Res, 2020, 40(4): 2171-2177. DOI: 10.21873/anticanres.14177.
[5]
KOKAINE L, GARDOVSKIS A, GARDOVSKIS J. Evaluation and predictive factors of complete response in rectal cancer after neoadjuvant chemoradiation therapy[J/OL]. Medicina, 2021, 57(10): 1044 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/34684080/. DOI: 10.3390/medicina57101044.
[6]
AL-RASHID F, ROBITAILLE S, LIBERMAN A S, et al. Trajectory of change of low anterior resection syndrome over time after restorative proctectomy for rectal adenocarcinoma[J]. Tech Coloproctol, 2022, 26(3): 195-203. DOI: 10.1007/s10151-021-02561-1.
[7]
CELENTANO V, COHEN R, WARUSAVITARNE J, et al. Sexual dysfunction following rectal cancer surgery[J]. Int J Colorectal Dis, 2017, 32(11): 1523-1530. DOI: 10.1007/s00384-017-2826-4.
[8]
GRASS J K, PERSIANI R, TIRELLI F, et al. Robotic versus transanal total mesorectal excision in sexual, anorectal, and urinary function: a multicenter, prospective, observational study[J]. Int J Colorectal Dis, 2021, 36(12): 2749-2761. DOI: 10.1007/s00384-021-04030-5.
[9]
CERDAN-SANTACRUZ C, SÃO JULIÃO G P, VAILATI B B, et al. Watch and wait approach for rectal cancer[J/OL]. J Clin Med, 2023, 12(8): 2873 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/37109210/. DOI: 10.3390/jcm12082873.
[10]
KALISZ K R, ENZERRA M D, PASPULATI R M. MRI evaluation of the response of rectal cancer to neoadjuvant chemoradiation therapy[J]. Radiographics, 2019, 39(2): 538-556. DOI: 10.1148/rg.2019180075.
[11]
YACHEVA A, DARDANOV D, ZLATAREVA D. The multipurpose usage of diffusion-weighted MRI in rectal cancer[J/OL]. Medicina, 2023, 59(12): 2162 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/38138265/. DOI: 10.3390/medicina59122162.
[12]
CHUNG S R, CHOI Y J, SUH C H, et al. Diffusion-weighted magnetic resonance imaging for predicting response to chemoradiation therapy for head and neck squamous cell carcinoma: a systematic review[J]. Korean J Radiol, 2019, 20(4): 649-661. DOI: 10.3348/kjr.2018.0446.
[13]
PARTRIDGE S C, ZHANG Z, NEWITT D C, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial[J]. Radiology, 2018, 289(3): 618-627. DOI: 10.1148/radiol.2018180273.
[14]
ZHAO D W, FAN W J, MENG L L, et al. Comparison of the pre-treatment functional MRI metrics' efficacy in predicting Locoregionally advanced nasopharyngeal carcinoma response to induction chemotherapy[J/OL]. Cancer Imaging, 2021, 21(1): 59 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/34758876/. DOI: 10.1186/s40644-021-00428-0.
[15]
REIG B, LEWIN A A, DU L D, et al. Breast MRI for evaluation of response to neoadjuvant therapy[J]. Radiographics, 2021, 41(3): 665-679. DOI: 10.1148/rg.2021200134.
[16]
NAPOLETANO M, MAZZUCCA D, PROSPERI E, et al. Locally advanced rectal cancer: qualitative and quantitative evaluation of diffusion-weighted magnetic resonance imaging in restaging after neoadjuvant chemo-radiotherapy[J]. Abdom Radiol, 2019, 44(11): 3664-3673. DOI: 10.1007/s00261-019-02012-4.
[17]
ZHAO M J, ZHAO L H, YANG H, et al. Apparent diffusion coefficient for the prediction of tumor response to neoadjuvant chemo-radiotherapy in locally advanced rectal cancer[J/OL]. Radiat Oncol, 2021, 16(1): 17 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/33472660/. DOI: 10.1186/s13014-020-01738-6.
[18]
JIMÉNEZ DE LOS SANTOS M E, REYES-PÉREZ J A, SANDOVAL-NAVA R M, et al. The apparent diffusion coefficient is a useful biomarker in predicting treatment response in patients with locally advanced rectal cancer[J/OL]. Acta Radiol Open, 2020, 9(9): 2058460120957295 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/32974055/. DOI: 10.1177/2058460120957295.
[19]
AMODEO S, ROSMAN A S, DESIATO V, et al. MRI-based apparent diffusion coefficient for predicting pathologic response of rectal cancer after neoadjuvant therapy: systematic review and meta-analysis[J]. AJR Am J Roentgenol, 2018, 211(5): W205-W216. DOI: 10.2214/AJR.17.19135.
[20]
BORASCHI P, CERVELLI R, DONATI F, et al. Response assessment of locally advanced rectal cancer after neoadjuvant chemoradiotherapy: is apparent diffusion coefficient useful on 3T magnetic resonance imaging?[J]. Colorectal Dis, 2023, 25(5): 905-915. DOI: 10.1111/codi.16483.
[21]
CHEN K, SHE H L, WU T, et al. Comparison of percentage changes in quantitative diffusion parameters for assessing pathological complete response to neoadjuvant therapy in locally advanced rectal cancer: a meta-analysis[J]. Abdom Radiol, 2021, 46(3): 894-908. DOI: 10.1007/s00261-020-02770-6.
[22]
LIANG C Y, CHEN M D, ZHAO X X, et al. Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer[J]. Eur J Radiol, 2019, 110: 249-255. DOI: 10.1016/j.ejrad.2018.12.005.
[23]
YANG L Q, QIU M, XIA C C, et al. Value of high-resolution DWI in combination with texture analysis for the evaluation of tumor response after preoperative chemoradiotherapy for locally advanced rectal cancer[J]. AJR Am J Roentgenol, 2019, 212(6): 1279-1286. DOI: 10.2214/AJR.18.20689.
[24]
XIE S M, MASOKANO I B, LIU W G, et al. Comparing the clinical utility of single-shot echo-planar imaging and readout-segmented echo-planar imaging in diffusion-weighted imaging of the liver at 3 tesla[J/OL]. Eur J Radiol, 2021, 135: 109472 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2020.109472. DOI: 10.1016/j.ejrad.2020.109472.
[25]
LE BIHAN D, BRETON E, LALLEMAND D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505. DOI: 10.1148/radiology.168.2.3393671.
[26]
ZHAO J, LI H B. Application progress of intravoxel incoherent motion imaging in clinical diagnosis and treatment of rectal cancer[J]. Chin J Magn Reson Imag, 2021, 12(12): 108-111. DOI: 10.12015/issn.1674-8034.2021.12.026.
[27]
HU H B, JIANG H J, WANG S, et al. 3.0T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer[J]. Abdom Radiol, 2021, 46(1): 134-143. DOI: 10.1007/s00261-020-02594-4.
[28]
XU Q Y, XU Y Y, SUN H L, et al. Quantitative intravoxel incoherent motion parameters derived from whole-tumor volume for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. J Magn Reson Imaging, 2018, 48(1): 248-258. DOI: 10.1002/jmri.25931.
[29]
WEN L, HOU J, ZHOU J M, et al. Intravoxel incoherent motion diffusion-weighted imaging for discriminating the pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J/OL]. Sci Rep, 2017, 7(1): 8496 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/28819296/. DOI: 10.1038/s41598-017-09227-9.
[30]
LI H, YUAN Y, CHEN X L, et al. Value of intravoxel incoherent motion for assessment of lymph node status and tumor response after chemoradiation therapy in locally advanced rectal cancer[J/OL]. Eur J Radiol, 2022, 146: 110106 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2021.110106. DOI: 10.1016/j.ejrad.2021.110106.
[31]
LI M, XU X D, XIA K J, et al. Comparison of diagnostic performance between perfusion-related intravoxel incoherent motion DWI and dynamic contrast-enhanced MRI in rectal cancer[J/OL]. Comput Math Methods Med, 2021, 2021: 5095940 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/34367318/. DOI: 10.1155/2021/5095940.
[32]
YANG X Y, XIAO X J, LU B L, et al. Perfusion-sensitive parameters of intravoxel incoherent motion MRI in rectal cancer: evaluation of reproducibility and correlation with dynamic contrast-enhanced MRI[J]. Acta Radiol, 2019, 60(5): 569-577. DOI: 10.1177/0284185118791201.
[33]
HONG Y, SONG G S, JIA Y P, et al. Predicting tumor deposits in patients with rectal cancer: using the models of multiple mathematical parameters derived from diffusion-weighted imaging[J/OL]. Eur J Radiol, 2022, 157: 110573 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2022.110573. DOI: 10.1016/j.ejrad.2022.110573.
[34]
BENNETT K M, SCHMAINDA K M, BENNETT R T, et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model[J]. Magn Reson Med, 2003, 50(4): 727-734. DOI: 10.1002/mrm.10581.
[35]
ZHANG L, YANG L Q, WEN L, et al. Noninvasively evaluating the grading of glioma by multiparametric magnetic resonance imaging[J/OL]. Acad Radiol, 2021, 28(5): e137-e146 [2024-06-10]. https://doi.org/10.1016/j.acra.2020.03.035. DOI: 10.1016/j.acra.2020.03.035.
[36]
ALMUTLAQ Z M, WILSON D J, BACON S E, et al. Evaluation of monoexponential, stretched-exponential and intravoxel incoherent motion MRI diffusion models in early response monitoring to neoadjuvant chemotherapy in patients with breast cancer-a preliminary study[J]. J Magn Reson Imaging, 2022, 56(4): 1079-1088. DOI: 10.1002/jmri.28113.
[37]
ZHANG H, ZHOU Y Y, LI J, et al. The value of DWI in predicting the response to synchronous radiochemotherapy for advanced cervical carcinoma: comparison among three mathematical models[J/OL]. Cancer Imaging, 2020, 20(1): 8 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/31937371/. DOI: 10.1186/s40644-019-0285-6.
[38]
CHAKHOYAN A, WOODWORTH D C, HARRIS R J, et al. Mono-exponential, diffusion kurtosis and stretched exponential diffusion MR imaging response to chemoradiation in newly diagnosed glioblastoma[J]. J Neurooncol, 2018, 139(3): 651-659. DOI: 10.1007/s11060-018-2910-9.
[39]
WU H, WU J, YU N, et al. The value of mono-exponential, bi-exponential and stretched exponential DWI models in identifying prostate cancer and stromal prostate hyperplasia[J]. Chin J Magn Reson Imag, 2020, 11(7): 546-551. DOI: 10.12015/issn.1674-8034.2020.07.014.
[40]
ZHU H B, ZHANG X Y, ZHOU X H, et al. Assessment of pathological complete response to preoperative hemoradiotherapy by means of multiple mathematical models of diffusion-weighted MRI in locally advanced rectal cancer: a prospective single-center study[J]. J Magn Reson Imaging, 2017, 46(1): 175-183. DOI: 10.1002/jmri.25567.
[41]
ZHU L, PAN Z L, MA Q, et al. Diffusion kurtosis imaging study of rectal adenocarcinoma associated with histopathologic prognostic factors: preliminary findings[J]. Radiology, 2017, 284(1): 66-76. DOI: 10.1148/radiol.2016160094.
[42]
LU W R, YANG X Y, QIU Q, et al. Research progress of diffusion kurtosis imaging in rectal cancer[J]. Int J Med Radiol, 2022, 45(2): 184-188. DOI: 10.19300/j.2022.Z18919.
[43]
ZHANG J H, LANG N, YUAN H S. Research advances in diffusional kurtosis imaging[J]. Chin J Magn Reson Imag, 2018, 9(4): 316-320. DOI: 10.12015/issn.167-0834.2018.04.016.
[44]
YANG L Q, XIA C C, ZHAO J, et al. The value of intravoxel incoherent motion and diffusion kurtosis imaging in the assessment of tumor regression grade and T stages after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer[J/OL]. Eur J Radiol, 2021, 136: 109504 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2020.109504. DOI: 10.1016/j.ejrad.2020.109504.
[45]
LI D D, CUI Y F, HOU L N, et al. Diffusion kurtosis imaging-derived histogram metrics for prediction of resistance to neoadjuvant chemoradiotherapy in rectal adenocarcinoma: preliminary findings[J/OL]. Eur J Radiol, 2021, 144: 109963 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2021.109963. DOI: 10.1016/j.ejrad.2021.109963.
[46]
BATES D D B, MAZAHERI Y, LOBAUGH S, et al. Evaluation of diffusion kurtosis and diffusivity from baseline staging MRI as predictive biomarkers for response to neoadjuvant chemoradiation in locally advanced rectal cancer[J]. Abdom Radiol, 2019, 44(11): 3701-3708. DOI: 10.1007/s00261-019-02073-5.
[47]
LIU X D, LIU A L, LI Y, et al. Application of dynamic contrast-enhanced magnetic resonance imaging and intravoxel incoherent motion model in pathological grading of rectal cancer and correlation of perfusion parameters[J]. Chin J Med Imag, 2020, 28(4): 256-259, 268. DOI: 10.3969/j.issn.1005-5185.2020.04.004.
[48]
WANG N, WANG L J. Research progress of intravoxel incoherent motion and dynamic contrast-enhanced MRI in radiotherapy response prediction of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(12): 161-165. DOI: 10.12015/issn.1674-8034.2023.12.029.
[49]
CIOLINA M, CARUSO D, DE SANTIS D, et al. Dynamic contrast-enhanced magnetic resonance imaging in locally advanced rectal cancer: role of perfusion parameters in the assessment of response to treatment[J]. Radiol Med, 2019, 124(5): 331-338. DOI: 10.1007/s11547-018-0978-0.
[50]
ZOU H H, YU J, WEI Y, et al. Response to neoadjuvant chemoradiotherapy for locally advanced rectum cancer: texture analysis of dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2019, 49(3): 885-893. DOI: 10.1002/jmri.26254.
[51]
YEO D M, OH S N, CHOI M H, et al. Histogram analysis of perfusion parameters from dynamic contrast-enhanced MR imaging with tumor characteristics and therapeutic response in locally advanced rectal cancer[J/OL]. Biomed Res Int, 2018, 2018: 3724393 [2024-06-10]. https://doi.org/10.1155/2018/3724393. DOI: 10.1155/2018/3724393.
[52]
PHAM T T, LINEY G, WONG K, et al. Multi-parametric magnetic resonance imaging assessment of whole tumour heterogeneity for chemoradiotherapy response prediction in rectal cancer[J]. Phys Imaging Radiat Oncol, 2021, 18: 26-33. DOI: 10.1016/j.phro.2021.03.003.
[53]
LIN K, LUO F, WANG Z W. Value of DCE-MRI quantitative and semi-quantitative analysis in the differential diagnosis of benign and malignant colorectal tumors[J]. Radiol Pract, 2023, 38(5): 587-592. DOI: 10.13609/j.cnki.1000-0313.2023.05.010.
[54]
BI W L, HOSNY A, SCHABATH M B, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157. DOI: 10.3322/caac.21552.
[55]
ZHU Y, OUYANG Z Q, SHAN H Y, et al. Application progress of MRI based artificial intelligence in rectal cancer[J]. Chin J Magn Reson Imag, 2023, 14(9): 176-180. DOI: 10.12015/issn.1674-8034.2023.09.032.
[56]
ZHANG X Y, WANG L, ZHU H T, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI[J]. Radiology, 2020, 296(1): 56-64. DOI: 10.1148/radiol.2020190936.
[57]
SHIN J, SEO N, BAEK S E, et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy[J]. Radiology, 2022, 303(2): 351-358. DOI: 10.1148/radiol.211986.
[58]
WANG J, CHEN J J, ZHOU R Z, et al. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients[J/OL]. BMC Cancer, 2022, 22(1): 420 [2024-06-10]. http://pubumed.ncbi.nlm.nih.gov/35439946/. DOI: 10.1186/s12885-022-09518-z.

PREV Application status of tumor regression grading method after neoadjuvant chemoradiotherapy based on magnetic resonance imaging for locally advanced rectal cancer
NEXT Advances in MRI studies of lymphvascular space invasion in endometrial carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn