Share:
Share this content in WeChat
X
Special Focus
Review on the application of MRI functional and quantitative imaging techniques in the diagnosis and treatment of cervical cancer
ZHANG Qinhe  LIU Ailian 

Cite this article as: ZHANG Q H, LIU A L. Review on the application of MRI functional and quantitative imaging techniques in the diagnosis and treatment of cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(8): 1-11, 24. DOI:10.12015/issn.1674-8034.2024.08.001.


[Abstract] Cervical cancer (CC) is the fifth most common cancer among women in our country, and the incidence is tending to be younger, which seriously threatens the life and health of women. The treatment plans for different stages and risks are not the same, and with the popularization of fertility preserving surgical treatment, higher requirements are placed on accurate preoperative staging and risk assessment. Magnetic resonance imaging (MRI) is an important method for the diagnosis, staging and efficacy evaluation of CC. However, the diagnosis and evaluation of CC by conventional MRI sequences are limited by subjective experience and lack of objective quantification, resulting in poor accuracy. New technologies, such as MRI functional imaging and quantitative imaging, can provide accurate quantitative information in multiple dimensions, including hemodynamic changes, varies in tissue microstructure, tumor hypoxia environment, cell proliferation and protein metabolism, which can be used for accurate preoperative diagnosis and risk assessment of CC and provide a visual basis for the comprehensive understanding of the pathophysiology and metabolism of tumors. Mining big imaging data by artificial intelligence can help solve clinical problems. This article will review the application progress of MRI functional imaging and quantitative imaging in the diagnosis and treatment of CC, aiming at clinical problems such as the staging, efficacy and recurrence assessment of CC, so as to promote its clinical application and improve the level of diagnosis and treatment.
[Keywords] cervical cancer;magnetic resonance imaging;pathological features;molecular pathology;efficacy;prognosis;radiomics;artificial intelligence;deep learning;precision medicine

ZHANG Qinhe   LIU Ailian*  

Department of Radiology, The First Affiliated Hospital of Dalian Medcial University, Dalian 116011, China

Corresponding author: LIU A L, E-mail: cjr.liuailian@vip.163.com

Conflicts of interest   None.

Received  2024-07-22
Accepted  2024-08-14
DOI: 10.12015/issn.1674-8034.2024.08.001
Cite this article as: ZHANG Q H, LIU A L. Review on the application of MRI functional and quantitative imaging techniques in the diagnosis and treatment of cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(8): 1-11, 24. DOI:10.12015/issn.1674-8034.2024.08.001.

[1]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[2]
ZHENG R S, CHEN R, HAN B F, et al. Cancer incidence and mortality in China, 2022[J]. Chin J Oncol, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.
[3]
ZHANG W F, CHEN C L, LIU P, et al. Impact of pelvic MRI in routine clinical practice on staging of IB1-IIA2 cervical cancer[J]. Cancer Manag Res, 2019, 11: 3603-3609. DOI: 10.2147/CMAR.S197496.
[4]
SHAKUR A, LEE J Y J, FREEMAN S. An update on the role of MRI in treatment stratification of patients with cervical cancer[J/OL]. Cancers, 2023, 15(20): 5105 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/37894476/. DOI: 10.3390/cancers15205105.
[5]
BHATLA N, AOKI D, SHARMA D N, et al. Cancer of the cervix uteri[J]. Int J Gynaecol Obstet, 2018, 143(Suppl 2): 22-36. DOI: 10.1002/ijgo.12611.
[6]
Gynecological Oncology Professional Committee of China Anti Cancer Association. Guidelines for diagnosis and treatment of cervical cancer (2021 edition)[J]. China Oncol, 2021, 31(6): 474-489. DOI: 10.19401/j.cnki.1007-3639.2021.06.06.
[7]
ABU-RUSTUM N R, YASHAR C M, BEAN S, et al. NCCN guidelines insights: cervical cancer, version 1.2020[J]. J Natl Compr Canc Netw, 2020, 18(6): 660-666. DOI: 10.6004/jnccn.2020.0027.
[8]
Gynecological Oncology (Group) Professional Committee of the Minimally Invasive Medicine Professional Committee of the Chinese Medical Association. Fertility Preservation Professional Committee of China Maternal and Child Health Association. Consensus of China experts on fertility-preserving surgery for early cervical cancer[J]. Chin J Min Inv Surg, 2021, 21(8): 673-679. DOI: 10.3969/j.issn.1009-6604.2021.08.001.
[9]
PENG Q H, LÜ W G. Interpretation of NCCN guidelines for cervical cancer, version 1.2022[J]. J Pract Oncol, 2022, 37(3): 205-214. DOI: 10.13267/j.cnki.syzlzz.2022.034.
[10]
CAO Y H, DENG S H, YAN L Z, et al. Perineural invasion is associated with poor prognosis of colorectal cancer: a retrospective cohort study[J]. Int J Colorectal Dis, 2020, 35(6): 1067-1075. DOI: 10.1007/s00384-020-03566-2.
[11]
LI Y Y, HUANG B B, XIA Y, et al. Relationship between tumor cells invading peripheral nerves and clinicopathological features in elderly patients with cervical cancer and its influence on treatment and prognosis[J]. Chin J Gerontol, 2021, 41(21): 4657-4660. DOI: 10.3969/j.issn.1005-9202.2021.21.018.
[12]
WU D Y, JIANG Y, LI G L. Progress in chemotherapy of cervical cancer[J]. Chin J Oncol Prev Treat, 2023, 15(5): 492-498. DOI: 10.3969/j.issn.1674-5671.2023.05.04.
[13]
CHEN Z, HAN F F, DU Y, et al. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 70 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36797231/. DOI: 10.1038/s41392-023-01332-8.
[14]
PENG L X, LU H M, CHEN J X, et al. Clinical value of multimodal MRI assessment of the response to apatinib mesylate thera-py in patients with advanced cervical cancer[J]. J Mol Imag, 2023, 46(3): 494-499. DOI: 10.12122/j.issn.1674-4500.2023.03.19.
[15]
LEE J, KIM C K, GU K W, et al. Value of blood oxygenation level-dependent MRI for predicting clinical outcomes in uterine cervical cancer treated with concurrent chemoradiotherapy[J]. Eur Radiol, 2019, 29(11): 6256-6265. DOI: 10.1007/s00330-019-06198-5.
[16]
IQBAL Z, ALBUQUERQUE K, CHAN K L. Magnetic resonance spectroscopy for cervical cancer: review and potential prognostic applications[J/OL]. Cancers, 2024, 16(11): 2141 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/38893260/. DOI: 10.3390/cancers16112141.
[17]
ZHOU J Y, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[18]
GE Y X, HU S D, WANG Z, et al. Feasibility and reproducibility of T2 mapping and DWI for identifying malignant lymph nodes in rectal cancer[J]. Eur Radiol, 2021, 31(5): 3347-3354. DOI: 10.1007/s00330-020-07359-7.
[19]
YUAN J, WEN Q, WANG H, et al. The use of quantitative T1-mapping to identify cells and collagen fibers in rectal cancer[J/OL]. Front Oncol, 2023, 13: 1189334 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/37546428/. DOI: 10.3389/fonc.2023.1189334.
[20]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[21]
NAGANAWA S, SATO C, KUMADA H, et al. Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix[J]. Eur Radiol, 2005, 15(1): 71-78. DOI: 10.1007/s00330-004-2529-4.
[22]
KUANG F, YAN Z P, LI H L, et al. Diagnostic accuracy of diffusion-weighted MRI for differentiation of cervical cancer and benign cervical lesions at 3.0T: comparison with routine MRI and dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2015, 42(4): 1094-1099. DOI: 10.1002/jmri.24894.
[23]
LIANG B, ZENG L Y, HE H, et al. Comparative study of small-field diffusion-weighted imaging and conventional diffusion-weighted imaging in staging of cervical cancer in the International Union of Obstetrics and Gynecology[J]. J Imag Res Med Appl, 2022, 6(10): 103-105. DOI: 10.3969/j.issn.2096-3807.2022.10.034.
[24]
MAO L J, ZHANG X L, CHEN T T, et al. High-resolution reduced field-of-view diffusion-weighted magnetic resonance imaging in the diagnosis of cervical cancer[J]. Quant Imaging Med Surg, 2023, 13(6): 3464-3476. DOI: 10.21037/qims-22-579.
[25]
LI J, QU J R, LI H L, et al. Preliminary study of applying introvoxel incoherent motion sequence in cervical cancer[J]. Chin J Radiol, 2013, 47(11): 1019-1022. DOI: 10.3760/cma.j.issn.1005-1201.2013.11.015.
[26]
HAN K, CROKE J, FOLTZ W, et al. A prospective study of DWI, DCE-MRI and FDG PET imaging for target delineation in brachytherapy for cervical cancer[J]. Radiother Oncol, 2016, 120(3): 519-525. DOI: 10.1016/j.radonc.2016.08.002.
[27]
MENG N, YIN H J, JIN X X, et al. Preliminary evaluation of histological characteristics of cervical carcinoma by amide proton transfer imaging[J]. J Clin Radiol, 2019, 38(2): 290-293.
[28]
HE Y L, LI Y, LIN C Y, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted MRI for cervical cancer: a preliminary study[J]. J Magn Reson Imaging, 2019, 50(4): 1318-1325. DOI: 10.1002/jmri.26710.
[29]
LIU J, LI S J, LIU J J, et al. Application of T2 mapping quantitative imaging in assessing clinical stage and pathological differentiation of cervical cancer[J]. J Zhengzhou Univ Med Sci, 2023, 58(3): 419-423. DOI: 10.13705/j.issn.1671-6825.2022.06.062.
[30]
XIE J, BAI J, SONG H Z, et al. Histologic Features of Cervical Cancer by Enhanced T1 mapping[J]. J Clin Radiol, 2023, 42(2): 291-295.
[31]
LI S J, LIU J, GUO R F, et al. T1 mapping and extracellular volume fraction measurement to evaluate the poor-prognosis factors in patients with cervical squamous cell carcinoma[J/OL]. NMR Biomed, 2023, 36(8): e4918 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36914267/. DOI: 10.1002/nbm.4918.
[32]
XIAO Y Q, CHEN W Y, LONG X, et al. 3D MR elastography-based stiffness as a marker for predicting tumor grade and subtype in cervical cancer[J]. Magn Reson Imaging, 2024, 109: 173-179. DOI: 10.1016/j.mri.2024.03.006.
[33]
GUO J, SAVIC L J, HILLEBRANDT K H, et al. MR elastography in cancer[J]. Invest Radiol, 2023, 58(8): 578-586. DOI: 10.1097/RLI.0000000000000971.
[34]
LIU Q, SHI Y, SUN H Z, et al. A preliminary application study of magnetic resonance elastography in the diagnosis of cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(8): 12-16, 38. DOI: 10.12015/issn.1674-8034.2024.08.002.
[35]
URUSHIBARA A, SAIDA T, MORI K, et al. Diagnosing uterine cervical cancer on a single T2-weighted image: comparison between deep learning versus radiologists[J/OL]. Eur J Radiol, 2021, 135: 109471 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/33338759/. DOI: 10.1016/j.ejrad.2020.109471.
[36]
ABINAYA K, SIVAKUMAR B. A deep learning-based approach for cervical cancer classification using 3D CNN and vision transformer[J]. J Imaging Inform Med, 2024, 37(1): 280-296. DOI: 10.1007/s10278-023-00911-z.
[37]
LIU Y, YE Z X, SUN H R, et al. Clinical application of diffusion-weighted magnetic resonance imaging in uterine cervical cancer[J]. Int J Gynecol Cancer, 2015, 25(6): 1073-1078. DOI: 10.1097/IGC.0000000000000472.
[38]
KUANG F, REN J, ZHONG Q, et al. The value of apparent diffusion coefficient in the assessment of cervical cancer[J]. Eur Radiol, 2013, 23(4): 1050-1058. DOI: 10.1007/s00330-012-2681-1.
[39]
TIAN S F, LIU A L, ZHU W, et al. A preliminary study on the diagnostic value of diffusion tensor imaging quantitative parameters in distinguishing cervical squamous cell carcinoma and cervical adenocarcinoma[J]. Chin Comput Med Imag, 2018, 24(6): 510-514. DOI: 10.3969/j.issn.1006-5741.2018.06.013.
[40]
CHEN J, CAO L, GU H M. The value of DKI-MRI in evaluating pathological types and differentiation degree of cervical cancer[J]. Radiol Pract, 2021, 36(5): 628-632. DOI: 10.13609/j.cnki.1000-0313.2021.05.011.
[41]
MENG N, WANG X J, SUN J, et al. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer[J]. Eur Radiol, 2020, 30(10): 5758-5767. DOI: 10.1007/s00330-020-06884-9.
[42]
JIANG Y X, YU Z H. The value of quantitative DCE-MRI in the diagnosis, classification and staging of cervical cancer[J]. Radiol Pract, 2020, 35(5): 647-651. DOI: 10.13609/j.cnki.1000-0313.2020.05.015.
[43]
ZHANG Z X, LIU J, ZHANG Y, et al. T1 mapping as a quantitative imaging biomarker for diagnosing cervical cancer: a comparison with diffusion kurtosis imaging[J/OL]. BMC Med Imaging, 2024, 24(1): 16 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/38200447/. DOI: 10.1186/s12880-024-01191-x.
[44]
LI S J, LIU J, ZHANG W H, et al. T1 mapping and multimodel diffusion-weighted imaging in the assessment of cervical cancer: a preliminary study[J/OL]. Br J Radiol, 2023, 96(1148): 20220952 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/37183908/. DOI: 10.1259/bjr.20220952.
[45]
LONG L, LIU M L, DENG X J, et al. 3D multifrequency magnetic resonance elastography in distinguishing endometrial and cervical adenocarcinoma[J]. Magn Reson Imaging, 2023, 102: 62-68. DOI: 10.1016/j.mri.2023.05.002.
[46]
ZHANG Q, YU X D, OUYANG H, et al. Whole-tumor texture model based on diffusion kurtosis imaging for assessing cervical cancer: a preliminary study[J]. Eur Radiol, 2021, 31(8): 5576-5585. DOI: 10.1007/s00330-020-07612-z.
[47]
TIAN S F, LIU A L, GUO Y, et al. Application of radiomics methods based on DKI sequence MK map for differentiating squamous cell carcinoma from cervix adenocarcinoma[J]. Chin J Med Imag, 2021, 29(7): 716-720. DOI: 10.3969/j.issn.1005-5185.2021.07.015.
[48]
WANG W, JIAO Y N, ZHANG L C, et al. Multiparametric MRI-based radiomics analysis: differentiation of subtypes of cervical cancer in the early stage[J]. Acta Radiol, 2022, 63(6): 847-856. DOI: 10.1177/02841851211014188.
[49]
WANG H Y, ZHU L X, LI G H, et al. Perfusion parameters of intravoxel incoherent motion based on tumor edge region of interest in cervical cancer: evaluation of differentiation and correlation with dynamic contrast-enhanced MRI[J]. Acta Radiol, 2020, 61(8): 1087-1095. DOI: 10.1177/0284185119890086.
[50]
ZHOU Y, LIU J Y, LIU C R, et al. Value of introvoxel incoherent motion model in assessment of differentiation and blood supply of cervical cancer[J]. Chin J Radiol, 2015, 49(5): 354-359. DOI: 10.3760/cma.j.issn.1005-1201.2015.05.008.
[51]
RAN Y T, BEI G G. The correlation between intravoxel incoherent motion and microvessel density and pathological differentiation of cervical cancer[J]. Chin J Magn Reson Imag, 2021, 12(7): 72-76. DOI: 10.12015/issn.1674-8034.2021.07.015.
[52]
WANG M D, PERUCHO J A U, VARDHANABHUTI V, et al. Radiomic features of T2-weighted imaging and diffusion kurtosis imaging in differentiating clinicopathological characteristics of cervical carcinoma[J]. Acad Radiol, 2022, 29(8): 1133-1140. DOI: 10.1016/j.acra.2021.08.018.
[53]
LI B B, SUN H Z, ZHANG S Y, et al. Amide proton transfer imaging to evaluate the grading of squamous cell carcinoma of the cervix: a comparative study using 18F FDG PET[J]. J Magn Reson Imaging, 2019, 50(1): 261-268. DOI: 10.1002/jmri.26572.
[54]
HOU M Y, SONG K, REN J P, et al. Comparative analysis of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in evaluating the histological grade of cervical squamous carcinoma[J/OL]. BMC Cancer, 2022, 22(1): 87 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/35057777/. DOI: 10.1186/s12885-022-09205-z.
[55]
MENG X, TIAN S F, MA C J, et al. APTw combined with mDixon-Quant imaging to distinguish the differentiation degree of cervical squamous carcinoma[J/OL]. Front Oncol, 2023, 13: 1105867 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36761975/. DOI: 10.3389/fonc.2023.1105867.
[56]
LI S J, LIU J, ZHANG F F, et al. Novel T2 mapping for evaluating cervical cancer features by providing quantitative T2 maps and synthetic morphologic images: a preliminary study[J]. J Magn Reson Imaging, 2020, 52(6): 1859-1869. DOI: 10.1002/jmri.27297.
[57]
LI S J, CHENG J L, ZHANG Y, et al. T1 mapping in evaluation of differentiation of cervical cancer: a primary study[J]. J China Clin Med Imag, 2020, 31(4): 276-280. DOI: 10.12117/jccmi.2020.04.011.
[58]
LI X S, WU S D, LI D C, et al. Intravoxel incoherent motion combined with dynamic contrast-enhanced perfusion MRI of early cervical carcinoma: correlations between multimodal parameters and HIF-1α expression[J]. J Magn Reson Imaging, 2019, 50(3): 918-929. DOI: 10.1002/jmri.26604.
[59]
ZHANG L O, SUN H Z, BAI X X, et al. Correlation between tumor glucose metabolism and multiparametric functional MRI (IVIM and R2*) metrics in cervical carcinoma: evidence from integrated 18F-FDG PET/MR[J]. J Magn Reson Imaging, 2019, 49(6): 1704-1712. DOI: 10.1002/jmri.26557.
[60]
DENG X J, LIU M L, SUN J Q, et al. Feasibility of MRI-based radiomics features for predicting lymph node metastases and VEGF expression in cervical cancer[J/OL]. Eur J Radiol, 2021, 134: 109429 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/33290975/. DOI: 10.1016/j.ejrad.2020.109429.
[61]
LI J, LIU J W, ZHANG Y J, et al. Correlation between DWI and ki-67 expression in cervical cancer[J]. J Clin Radiol, 2021, 40(1): 97-100.
[62]
LIU Y, WEN G, DONG T F, et al. MRI Radiomic models for prediction of Ki-67 expression in cervical cancer[J]. Radiol Pract, 2023, 38(11): 1436-1441. DOI: 10.13609/j.cnki.1000-0313.2023.11.012.
[63]
LIU K H, YANG W, TIAN H P, et al. Combined model of clinical, pathological, MRI features and IVIM parameters for predicting programmed cell death protein 1 (PD-1)/PD-1 ligand (PD-L1)expression in cervical cancers[J]. Chin J Med Imag Technol, 2023, 39(2): 235-240. DOI: 10.13929/j.issn.1003-3289.2023.02.019.
[64]
WEI M Z, ZHAO Z H, HU H J, et al. MRI radiomics parameters in predicting p53 of cervical squamous cell carcinoma[J]. Chin J Med Imag, 2019, 27(12): 934-937, 947. DOI: 10.3969/j.issn.1005-5185.2019.12.013.
[65]
MEYER H J, HAMERLA G, HÖHN A K, et al. Whole lesion histogram analysis derived from morphological MRI sequences might be able to predict EGFR- and Her2-expression in cervical cancer[J/OL]. Acad Radiol, 2019, 26(8): e208-e215 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/30318289/. DOI: 10.1016/j.acra.2018.09.008.
[66]
MEYER H J, GUNDERMANN P, HÖHN A K, et al. Associations between whole tumor histogram analysis parameters derived from ADC maps and expression of EGFR, VEGF, Hif 1-alpha, Her-2 and Histone 3 in uterine cervical cancer[J]. Magn Reson Imaging, 2019, 57: 68-74. DOI: 10.1016/j.mri.2018.10.016.
[67]
MORI T, KATO H, KAWAGUCHI M, et al. MRI characteristics for predicting histological subtypes in patients with uterine cervical adenocarcinoma[J/OL]. Eur J Radiol, 2023, 158: 110612 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36542931/. DOI: 10.1016/j.ejrad.2022.110612.
[68]
SALVO G, ODETTO D, SAEZ PERROTTA M C, et al. Measurement of tumor size in early cervical cancer: an ever-evolving paradigm[J]. Int J Gynecol Cancer, 2020, 30(8): 1215-1223. DOI: 10.1136/ijgc-2020-001436.
[69]
XIAO M L, YAN B C, LI Y, et al. Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: a meta-analysis[J]. Eur Radiol, 2020, 30(3): 1405-1418. DOI: 10.1007/s00330-019-06461-9.
[70]
SONG Q L, MA C J, TIAN S F, et al. Acceleration of uterine 3D T2 weighted imaging by compressed SENSE: a multicenter study[J/OL]. Br J Radiol, 2024: tqae113 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/38885406/. DOI: 10.1093/bjr/tqae113.
[71]
ZHANG J J, WANG Y T, CAO D Y, et al. MRI-based three-dimensional reconstruction for staging cervical cancer and predicting high-risk patients[J/OL]. Ann Transl Med, 2021, 9(18): 1398 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/34733950/. DOI: 10.21037/atm-21-2246.
[72]
SALEH M, VIRARKAR M, JAVADI S, et al. Cervical cancer: 2018 revised international federation of gynecology and obstetrics staging system and the role of imaging[J]. AJR Am J Roentgenol, 2020, 214(5): 1182-1195. DOI: 10.2214/AJR.19.21819.
[73]
MENG X, TIAN S F, LIN L J, et al. Application value of 3D isotropic T2 weighted images for assessing vaginal fornix invasion of cervical cancer[J]. Chin J CT MRI, 2023, 21(1): 123-125. DOI: 10.3969/j.issn.1672-5131.2023.01.041.
[74]
XU Q, PENG X Y, GUO C Y, et al. Intra- and peritumoral sagittal T2WI radiomics nomogram for preoperative prediction of patients with stage ⅠB and stage ⅡA cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(8): 46-51, 64. DOI: 10.12015/issn.1674-8034.2024.08.007.
[75]
BALCACER P, SHERGILL A, LITKOUHI B. MRI of cervical cancer with a surgical perspective: staging, prognostic implications and pitfalls[J]. Abdom Radiol, 2019, 44(7): 2557-2571. DOI: 10.1007/s00261-019-01984-7.
[76]
PARK J J, KIM C K, PARK S Y, et al. Value of diffusion-weighted imaging in predicting parametrial invasion in stage IA2-IIA cervical cancer[J]. Eur Radiol, 2014, 24(5): 1081-1088. DOI: 10.1007/s00330-014-3109-x.
[77]
PAOLA V D, PERILLO F, GUI B, et al. Detection of parametrial invasion in women with uterine cervical cancer using diffusion tensor imaging at 1.5T MRI[J]. Diagn Interv Imaging, 2022, 103(10): 472-478. DOI: 10.1016/j.diii.2022.05.005.
[78]
LI X X, WEI C, LIN T T, et al. Intravoxel incoherent motion diffusion weighted imaging and dynamic contrast-enhanced MRI in diagnosis of stage Ⅱ cervical cancer with parametrium invasion[J]. J Clin Radiol, 2020, 39(4): 720-725.
[79]
YANG Y, QIAN Y F. The value of intravoxel incoherent motion diffusion weighted imaging combined with texture analysis baesd on T2 WI in diagnosis of cervical cancer with parametrium invasion[J]. J Pract Radiol, 2021, 37(7): 1140-1143. DOI: 10.3969/j.issn.1002-1671.2021.07.022.
[80]
LI X X, LIN T T, LIU B, et al. Diagnosis of cervical cancer with parametrial invasion on whole-tumor dynamic contrast-enhanced magnetic resonance imaging combined with whole-lesion texture analysis based on T2- weighted images[J/OL]. Front Bioeng Biotechnol, 2020, 8: 590 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/32596230/. DOI: 10.3389/fbioe.2020.00590.
[81]
WANG T, GAO T T, GUO H, et al. Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram[J]. Eur Radiol, 2020, 30(6): 3585-3593. DOI: 10.1007/s00330-019-06655-1.
[82]
XIAO M L, FU L, WEI Y, et al. Intratumoral and peritumoral MRI radiomics nomogram for predicting parametrial invasion in patients with early-stage cervical adenocarcinoma and adenosquamous carcinoma[J]. Eur Radiol, 2024, 34(2): 852-862. DOI: 10.1007/s00330-023-10042-2.
[83]
CHAROENKWAN P, SHOOMBUATONG W, NANTASUPHA C, et al. iPMI: machine learning-aided identification of parametrial invasion in women with early-stage cervical cancer[J/OL]. Diagnostics, 2021, 11(8): 1454 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/34441388/. DOI: 10.3390/diagnostics11081454.
[84]
SONG Q L, TIAN S F, MA C J, et al. Amide proton transfer weighted imaging combined with dynamic contrast-enhanced MRI in predicting lymphovascular space invasion and deep stromal invasion of IB1-IIA1 cervical cancer[J/OL]. Front Oncol, 2022, 12: 916846 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36172148/. DOI: 10.3389/fonc.2022.916846.
[85]
ZHU H C, CAO K, LI X T, et al. MRI assessment of early cervical cancer invasion depth of stroma[J]. Chin J Med Imag Technol, 2020, 36(4): 559-563. DOI: 10.13929/j.issn.1003-3289.2020.04.019.
[86]
REN J, HE Y L, LI Y, et al. The value of model based on radiomics features of T2-weighted imaging and clinical feature in diagnosing the depth of stromal invasion of cervical squamous cell carcinoma[J]. Med J Peking Union Med Coll Hosp, 2021, 12(5): 705-712. DOI: 10.12290/xhyxzz.2021-0437.
[87]
YAN H W, HUANG G T, YANG Z H, et al. Machine learning-based multiparametric magnetic resonance imaging radiomics model for preoperative predicting the deep stromal invasion in patients with early cervical cancer[J]. J Imaging Inform Med, 2024, 37(1): 230-246. DOI: 10.1007/s10278-023-00906-w.
[88]
REN J, LI Y, YANG J J, et al. MRI-based radiomics analysis improves preoperative diagnostic performance for the depth of stromal invasion in patients with early stage cervical cancer[J/OL]. Insights Imaging, 2022, 13(1): 17 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/35092505/. DOI: 10.1186/s13244-022-01156-0.
[89]
LIN G, HO K C, WANG J J, et al. Detection of lymph node metastasis in cervical and uterine cancers by diffusion-weighted magnetic resonance imaging at 3T[J]. J Magn Reson Imaging, 2008, 28(1): 128-135. DOI: 10.1002/jmri.21412.
[90]
PERUCHO J A U, CHIU K W H, WONG E M F, et al. Diffusion-weighted magnetic resonance imaging of primary cervical cancer in the detection of sub-centimetre metastatic lymph nodes[J/OL]. Cancer Imaging, 2020, 20(1): 27 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/32252829/. DOI: 10.1186/s40644-020-00303-4.
[91]
KIM S H, CHO S H. Assessment of pelvic lymph node metastasis in FIGO ⅠB and ⅡA cervical cancer using quantitative dynamic contrast-enhanced MRI parameters[J]. Diagn Interv Radiol, 2020, 26(5): 382-389. DOI: 10.5152/dir.2020.19365.
[92]
SONG J C, HU Q M, MA Z L, et al. Feasibility of T2WI-MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cervical cancer patients[J]. Eur Radiol, 2021, 31(9): 6938-6948. DOI: 10.1007/s00330-021-07735-x.
[93]
QIAN W L, LI Z S, CHEN W D, et al. RESOLVE-DWI-based deep learning nomogram for prediction of normal-sized lymph node metastasis in cervical cancer: a preliminary study[J/OL]. BMC Med Imaging, 2022, 22(1): 221 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36528577/. DOI: 10.1186/s12880-022-00948-6.
[94]
ZHANG Y, ZHANG K Y, JIA H D, et al. Feasibility of predicting pelvic lymph node metastasis based on IVIM-DWI and texture parameters of the primary lesion and lymph nodes in patients with cervical cancer[J]. Acad Radiol, 2022, 29(7): 1048-1057. DOI: 10.1016/j.acra.2021.08.026.
[95]
HUANG Q H, WANG Y C, MENG X Y, et al. Amide proton transfer-weighted imaging combined with ZOOMit diffusion kurtosis imaging in predicting lymph node metastasis of cervical cancer[J]. Bioengineering, 2023, 10(3): 331 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36978722/. DOI: 10.3390/bioengineering10030331.
[96]
XU Q H, SONG Q L, WANG Y, et al. Amide proton transfer weighted combined with diffusion kurtosis imaging for predicting lymph node metastasis in cervical cancer[J]. Magn Reson Imaging, 2024, 106: 85-90. DOI: 10.1016/j.mri.2023.12.001.
[97]
XIA X M, LI D D, DU W, et al. Radiomics based on nomogram predict pelvic lymphnode metastasis in early-stage cervical cancer[J/OL]. Diagnostics, 2022, 12(10): 2446 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36292135/. DOI: 10.3390/diagnostics12102446.
[98]
WANG T, LI Y Y, MA N N, et al. A MRI radiomics-based model for prediction of pelvic lymph node metastasis in cervical cancer[J/OL]. World J Surg Oncol, 2024, 22(1): 55 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/38365759/. DOI: 10.1186/s12957-024-03333-5.
[99]
SHI J X, DONG Y, JIANG W Y, et al. MRI-based peritumoral radiomics analysis for preoperative prediction of lymph node metastasis in early-stage cervical cancer: a multi-center study[J]. Magn Reson Imaging, 2022, 88: 1-8. DOI: 10.1016/j.mri.2021.12.008.
[100]
YANG L Y, TANG K, WANG J, et al. The diagnostic value of mpMRI combined with NLR and PLR in lymph node metastasis of cervical cancer[J]. J Med Inf, 2023, 36(18): 160-163. DOI: 10.3969/j.issn.1006-1959.2023.18.032.
[101]
YANG W, QIANG J W, TIAN H P, et al. Minimum apparent diffusion coefficient for predicting lymphovascular invasion in invasive cervical cancer[J]. J Magn Reson Imaging, 2017, 45(6): 1771-1779. DOI: 10.1002/jmri.25542.
[102]
MALEK M, RAHMANI M, POURASHRAF M, et al. Prediction of lymphovascular space invasion in cervical carcinoma using diffusion kurtosis imaging[J/OL]. Cancer Treat Res Commun, 2022, 31: 100559 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/35460974/. DOI: 10.1016/j.ctarc.2022.100559.
[103]
SHI Y Y, FU J, LIU H. Application value of dynamic contrast enhanced-magnetic resonance imaging and diffusion-weighted imaging in evaluating lymph-vascular space invasion in early cervical cancer[J]. Oncol Prog, 2022, 20(12): 1293-1296. DOI: 10.11877/j.issn.1672-1535.2022.20.12.28.
[104]
GUO L M, WANG J, WU W Q, et al. A preliminary study of quantitative parameters derived from synthetic MRI for predicting the lymphovascular space invasion status in cervical squamous cell carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(11): 103-107, 120. DOI: 10.12015/issn.1674-8034.2023.11.017.
[105]
WANG W, FAN X F, YANG J, et al. Preliminary MRI study of extracellular volume fraction for identification of lymphovascular space invasion of cervical cancer[J]. J Magn Reson Imaging, 2023, 57(2): 587-597. DOI: 10.1002/jmri.28423.
[106]
DU W, WANG Y, LI D D, et al. Preoperative prediction of lymphovascular space invasion in cervical cancer with radiomics-based nomogram[J/OL]. Front Oncol, 2021, 11: 637794 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/34322375/. DOI: 10.3389/fonc.2021.637794.
[107]
HUANG G, CUI Y Q, WANG P, et al. Multi-parametric magnetic resonance imaging-based radiomics analysis of cervical cancer for preoperative prediction of lymphovascular space invasion[J/OL]. Front Oncol, 2021, 11: 663370 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/35096556/. DOI: 10.3389/fonc.2021.663370.
[108]
WU Y, WANG S X, CHEN Y Q, et al. A multicenter study on preoperative assessment of lymphovascular space invasion in early-stage cervical cancer based on multimodal MR radiomics[J]. J Magn Reson Imaging, 2023, 58(5): 1638-1648. DOI: 10.1002/jmri.28676.
[109]
WANG S X, LIU X W, WU Y, et al. Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study[J/OL]. Front Oncol, 2023, 13: 1252074 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/37954078/. DOI: 10.3389/fonc.2023.1252074.
[110]
CUI L P, YU T, KAN Y Y, et al. Multi-parametric MRI-based peritumoral radiomics on prediction of lymph-vascular space invasion in early-stage cervical cancer[J]. Diagn Interv Radiol, 2022, 28(4): 312-321. DOI: 10.5152/dir.2022.20657.
[111]
GUO Q, GAO Y F, LIN Y Y, et al. A nomogram of preoperative indicators predicting lymph vascular space invasion in cervical cancer[J]. Arch Gynecol Obstet, 2024, 309(5): 2079-2087. DOI: 10.1007/s00404-024-07385-6.
[112]
JIANG X R, LI J X, KAN Y Y, et al. MRI based radiomics approach with deep learning for prediction of vessel invasion in early-stage cervical cancer[J]. IEEE/ACM Trans Comput Biol Bioinform, 2021, 18(3): 995-1002. DOI: 10.1109/TCBB.2019.2963867.
[113]
AN Q, ZHANG Q H, ZHONG L, et al. The radiomics model based on APT for preoperative prediction of cervical cancer lymphovascular space invasion[J]. Chin J Magn Reson Imaging, 2024, 15(8): 31-38. DOI: 10.12015/issn.1674-8034.2024.08.005.
[114]
CHEN X L, DUAN H, ZHAO H W, et al. Perineural invasion in cervical cancer: a multicenter retrospective study[J/OL]. Eur J Surg Oncol, 2024, 50(6): 108313 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/38579659/. DOI: 10.1016/j.ejso.2024.108313.
[115]
WANG L H, MENG Y K, LI S D, et al. Correlation analysis of MR intravoxel incoherent motion quantitative parameters with vascular and nerve invasion of rectal adenocarcinoma[J]. J Pract Radiol, 2023, 39(3): 408-412. DOI: 10.3969/j.issn.1002-1671.2023.03.016.
[116]
ZHANG Q Y, LIU J S, TIAN S F, et al. The value of amide proton transfer weighted combined with dynamic contrast-enhanced MRI in evaluating cervical cancer nerve invasion[J]. Chin J Magn Reson Imaging, 2024, 15(8): 39-45. DOI: 10.12015/issn.1674-8034.2024.08.006.
[117]
YI Q Q, ZHOU Z, LUO Y, et al. Construction of prediction model of intermediate risk factors for early cervical cancer based on preoperative MRI radiomics and clinical features[J]. Chin J Magn Reson Imag, 2022, 13(4): 124-127, 136. DOI: 10.12015/issn.1674-8034.2022.04.024.
[118]
LIU J, LI S J, CAO Q C, et al. Risk factors for the recurrence of cervical cancer using MR-based T1 mapping: a pilot study[J/OL]. Front Oncol, 2023, 13: 1133709 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/37007135/. DOI: 10.3389/fonc.2023.1133709.
[119]
ZHANG W J, LU N, HE H Q, et al. Application of synthetic magnetic resonance imaging and DWI for evaluation of prognostic factors in cervical carcinoma: a prospective preliminary study[J/OL]. Br J Radiol, 2023, 96(1141): 20220596 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/36341699/. DOI: 10.1259/bjr.20220596.
[120]
LI S J, LIU J, ZHANG Z X, et al. Added-value of 3D amide proton transfer MRI in assessing prognostic factors of cervical cancer: a comparative study with multiple model diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2023, 13(12): 8157-8172. DOI: 10.21037/qims-23-324.
[121]
CUI Y Q, HUANG G, WANG L L, et al. Clinical-radiomic analysis of multi-parametric magnetic resonance imaging predicts lymphovascular space invasion and outcomes in cervical cancer[J]. Chin J Magn Reson Imag, 2023, 14(2): 73-82. DOI: 10.12015/issn.1674-8034.2023.02.013.
[122]
ZHANG Y J, WU C, DU J L, et al. Prediction of recurrence risk factors in patients with early-stage cervical cancers by nomogram based on MRI handcrafted radiomics features and deep learning features: a dual-center study[J]. Abdom Radiol, 2024, 49(1): 258-270. DOI: 10.1007/s00261-023-04125-3.
[123]
ZHENG X, SHEN F M, ZHENG D C, et al. The application of magnetic resonance diffusion kurtosis imaging in efficacy evaluation of early radiotherapy of cervical carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(2): 68-72, 82. DOI: 10.12015/issn.1674-8034.2023.02.012.
[124]
RIZZO S, BUSCARINO V, ORIGGI D, et al. Evaluation of diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) as early response biomarkers in cervical cancer patients[J]. Radiol Med, 2016, 121(11): 838-846. DOI: 10.1007/s11547-016-0665-y.
[125]
BIAN H, LIU F H, CHEN S, et al. Intravoxel incoherent motion diffusion-weighted imaging evaluated the response to concurrent chemoradiotherapy in patients with cervical cancer[J/OL]. Medicine, 2019, 98(46): e17943 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/31725650/. DOI: 10.1097/MD.0000000000017943.
[126]
GU K W, KIM C K, CHOI C H, et al. Prognostic value of ADC quantification for clinical outcome in uterine cervical cancer treated with concurrent chemoradiotherapy[J]. Eur Radiol, 2019, 29(11): 6236-6244. DOI: 10.1007/s00330-019-06204-w.
[127]
DENG X J, LIU M L, ZHOU Q, et al. Predicting treatment response to concurrent chemoradiotherapy in squamous cell carcinoma of the cervix using amide proton transfer imaging and intravoxel incoherent motion imaging[J]. Diagn Interv Imaging, 2022, 103(12): 618-624. DOI: 10.1016/j.diii.2022.09.001.
[128]
FANG M J, KAN Y Y, DONG D, et al. Multi-habitat based radiomics for the prediction of treatment response to concurrent chemotherapy and radiation therapy in locally advanced cervical cancer[J/OL]. Front Oncol, 2020, 10: 563 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/32432035/. DOI: 10.3389/fonc.2020.00563.
[129]
WANG Y J, LI W L, CHENG H X, et al. The development and external validation of a model based on MRI quantification, pathology, and blood cell parameters to predict the efficacy of concurrent chemoradiotherapy for stage ⅡB-Ⅲcervical cancer[J]. Chin J Magn Reson Imag, 2023, 14(8): 86-93. DOI: 10.12015/issn.1674-8034.2023.08.014.
[130]
PARK S H, HAHM M H, BAE B K, et al. Magnetic resonance imaging features of tumor and lymph node to predict clinical outcome in node-positive cervical cancer: a retrospective analysis[J/OL]. Radiat Oncol, 2020, 15(1): 86 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/32312283/. DOI: 10.1186/s13014-020-01502-w.
[131]
WORMALD B W, DORAN S J, IND T E, et al. Radiomic features of cervical cancer on T2-and diffusion-weighted MRI: prognostic value in low-volume tumors suitable for trachelectomy[J]. Gynecol Oncol, 2020, 156(1): 107-114. DOI: 10.1016/j.ygyno.2019.10.010.
[132]
ZHANG Y, BO J, WEI C, et al. The value of multi parameter MRI and radiomics in predicting lymph node metastasis and efficacy in cervical and endometrial cancer[J]. Chin J Radiol, 2023, 57(3): 339-340. DOI: 10.3760/cma.j.cn112149-20230118-00046.
[133]
CAI M T, YAO F, DING J, et al. MRI radiomic features: a potential biomarker for progression-free survival prediction of patients with locally advanced cervical cancer undergoing surgery[J/OL]. Front Oncol, 2021, 11: 749114 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/34970482/. DOI: 10.3389/fonc.2021.749114.
[134]
ZHANG X M, ZHAO J W, ZHANG Q, et al. MRI-based radiomics value for predicting the survival of patients with locally advanced cervical squamous cell cancer treated with concurrent chemoradiotherapy[J/OL]. Cancer Imaging, 2022, 22(1): 35 [2024-08-13]. https://pubmed.ncbi.nlm.nih.gov/35842679/. DOI: 10.1186/s40644-022-00474-2.
[135]
董林逍, 刘金金, 张月洁, 等. 基于治疗前多参数MRI 影像组学特征预测局部晚期宫颈癌患者新辅助化疗后脉管浸润[J]. 磁共振成像, 2024, 15(8): 1-7.
[136]
刘金金, 董林逍, 杨紫涵, 等. 治疗前多参数MRI 影像组学特征预测晚期宫颈鳞癌患者新辅助化疗后淋巴结转移[J]. 磁共振成像, 2024, 15(8): 1-8.

PREV Research progress on quantitative evaluation of ischiofemoral impingement syndrome by magnetic resonance imaging
NEXT A preliminary application study of magnetic resonance elastography in the diagnosis of cervical cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn