Share:
Share this content in WeChat
X
Special Focus
A preliminary application study of magnetic resonance elastography in the diagnosis of cervical cancer
LIU Qiang  SHI Yu  SUN Hongzan  ZHOU Minghui  WANG Zhiying  LUO Baihe  PAN Chen  LIU Kejin  QI Wenxu 

Cite this article as: LIU Q, SHI Y, SUN H Z, et al. A preliminary application study of magnetic resonance elastography in the diagnosis of cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(8): 12-16, 38. DOI:10.12015/issn.1674-8034.2024.08.002.


[Abstract] Objective To explore the clinical value of magnetic resonance elastography (MRE) in cervical cancer.Materials and Methods In this prospective study, a total of 39 patients diagnosed with cervical cancer (cervical cancer group) were prospectively recruited, along with 39 healthy female volunteers (control group) matched for age and body mass index (BMI). The participants underwent routine cervical MRI and MRE examinations with a frequency of 60 Hz. The stiffness values of the cervix were measured in both groups, along with the volume and depth of infiltration of tumors in the cervical cancer group, were measured. Tumor staging was collected for patients in the cervical cancer group. A paired sample t-test was used to compare the elasticity values between the cervical cancer group and the healthy control group. Spearman's rank correlation coefficient and receiver operating characteristic (ROC) curve analysis were conducted to assess the correlation between stiffness values, tumor volume, infiltration depth, and cervical cancer staging, as well as the diagnostic efficiency of staging cervical cancer.Results The average stiffness value of the cervical cancer group [(5.76±0.99)] kPa was significantly higher than the healthy control group [(2.94±0.25) kPa; P<0.001]. Stiffness values, tumor volume, and infiltration depth showed statistically significant differences between early (≤ⅡA stage) and advanced stage (≥ⅡB stage) cervical cancer and were positively correlated with cervical cancer staging (r=0.439, 0.384, 0.322; P<0.05). The diagnostic efficacy of stiffness values was superior to tumor volume and infiltration depth, with the area under the curve (AUC) of ROC for stiffness values (0.754) > tumor volume (0.722) > infiltration depth (0.687).Conclusions MRE technology can serve as a non-invasive adjunct diagnostic tool for the diagnosis and staging of cervical cancer, holding potential clinical application prospects in the research and formulation of treatment strategies for cervical cancer.
[Keywords] cervical cancer;magnetic resonance elastography;tumor stiffness;magnetic resonance imaging;staging

LIU Qiang1, 2   SHI Yu1   SUN Hongzan1   ZHOU Minghui1   WANG Zhiying1   LUO Baihe1   PAN Chen1   LIU Kejin1   QI Wenxu1*  

1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

2 Department of Radiology, the Seventh Clinical College, China Medical University, Fushun 113012, China

Corresponding author: QI W X, E-mail: qiwx@sj-hospital.org

Conflicts of interest   None.

Received  2023-11-09
Accepted  2024-03-23
DOI: 10.12015/issn.1674-8034.2024.08.002
Cite this article as: LIU Q, SHI Y, SUN H Z, et al. A preliminary application study of magnetic resonance elastography in the diagnosis of cervical cancer[J]. Chin J Magn Reson Imaging, 2024, 15(8): 12-16, 38. DOI:10.12015/issn.1674-8034.2024.08.002.

[1]
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30. DOI: 10.3322/caac.21332.
[2]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[3]
SINGH D, VIGNAT J, LORENZONI V, et al. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative[J/OL]. Lancet Glob Health, 2023, 11(2): e197-e206 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/36528031/. DOI: 10.1016/S2214-109X(22)00501-0.
[4]
ZHONG J L, SU M T, JIANG Y, et al. VEGFR2 targeted microbubble-based ultrasound molecular imaging improving the diagnostic sensitivity of microinvasive cervical cancer[J/OL]. J Nanobiotechnology, 2023, 21(1): 220 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/37438780/. DOI: 10.1186/s12951-023-01984-2.
[5]
WANG Y A, YAN Q J, FAN C M, et al. Overview and countermeasures of cancer burden in China[J]. Sci China Life Sci, 2023, 66(11): 2515-2526. DOI: 10.1007/s11427-022-2240-6.
[6]
PERKINS R B, WENTZENSEN N, GUIDO R S, et al. Cervical cancer screening: a review[J]. JAMA, 2023, 330(6): 547-558. DOI: 10.1001/jama.2023.13174.
[7]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[8]
FOVARGUE D, NORDSLETTEN D, SINKUS R. Stiffness reconstruction methods for MR elastography[J/OL]. NMR Biomed, 2018, 31(10): e3935 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/29774974/. DOI: 10.1002/nbm.3935.
[9]
HU L L. Requirements for accurate estimation of shear modulus by magnetic resonance elastography: a computational comparative study[J/OL]. Comput Methods Programs Biomed, 2020, 192: 105437 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/32182441/. DOI: 10.1016/j.cmpb.2020.105437.
[10]
LIU G X, MA D, WANG H F, et al. Three-dimensional multifrequency magnetic resonance elastography improves preoperative assessment of proliferative hepatocellular carcinoma[J/OL]. Insights Imaging, 2023, 14(1): 89 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/37198348/. DOI: 10.1186/s13244-023-01427-4.
[11]
REEVES E L, LI J, ZORMPAS-PETRIDIS K, et al. Investigating the contribution of hyaluronan to the breast tumour microenvironment using multiparametric MRI and MR elastography[J]. Mol Oncol, 2023, 17(6): 1076-1092. DOI: 10.1002/1878-0261.13437.
[12]
GUO J, SAVIC L J, HILLEBRANDT K H, et al. MR elastography in cancer[J]. Invest Radiol, 2023, 58(8): 578-586. DOI: 10.1097/RLI.0000000000000971.
[13]
ZHANG L N, LI M S, ZHU J, et al. The value of quantitative MR elastography-based stiffness for assessing the microvascular invasion grade in hepatocellular carcinoma[J]. Eur Radiol, 2023, 33(6): 4103-4114. DOI: 10.1007/s00330-022-09290-5.
[14]
LEE S I, ATRI M. 2018 FIGO staging system for uterine cervical cancer: enter cross-sectional imaging[J]. Radiology, 2019, 292(1): 15-24. DOI: 10.1148/radiol.2019190088.
[15]
JIANG X Y, ASBACH P, STREITBERGER K J, et al. In vivo high-resolution magnetic resonance elastography of the uterine corpus and cervix[J]. Eur Radiol, 2014, 24(12): 3025-3033. DOI: 10.1007/s00330-014-3305-8.
[16]
LI M S, GUO J, HU P, et al. Tomoelastography based on multifrequency MR elastography for prostate cancer detection: comparison with multiparametric MRI[J/OL]. Radiology, 2021, 299(2): E259 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/33687285/. DOI: 10.1148/radiol.2021219008.
[17]
HU J X, GUO J, PEI Y G, et al. Rectal tumor stiffness quantified by in vivo tomoelastography and collagen content estimated by histopathology predict tumor aggressiveness[J/OL]. Front Oncol, 2021, 11: 701336 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/34485136/. DOI: 10.3389/fonc.2021.701336.
[18]
VENKATESH S K, YIN M, GLOCKNER J F, et al. MR elastography of liver tumors: preliminary results[J]. AJR Am J Roentgenol, 2008, 190(6): 1534-1540. DOI: 10.2214/AJR.07.3123.
[19]
MCKNIGHT A L, KUGEL J L, ROSSMAN P J, et al. MR elastography of breast cancer: preliminary results[J]. AJR Am J Roentgenol, 2002, 178(6): 1411-1417. DOI: 10.2214/ajr.178.6.1781411.
[20]
HECTORS S J, LEWIS S. Tomoelastography of the prostate: use of tissue stiffness for improved cancer detection[J]. Radiology, 2021, 299(2): 371-373. DOI: 10.1148/radiol.2021210292.
[21]
XIN Y, LI K M, HUANG M, et al. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine[J]. Oncogene, 2023, 42(47): 3457-3490. DOI: 10.1038/s41388-023-02844-x.
[22]
KHOONKARI M, LIANG D, KAMPERMAN M, et al. Physics of brain cancer: multiscale alterations of glioblastoma cells under extracellular matrix stiffening[J/OL]. Pharmaceutics, 2022, 14(5): 1031 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/35631616/. DOI: 10.3390/pharmaceutics14051031.
[23]
SAFAEI S, SAJED R, SHARIFTABRIZI A, et al. Tumor matrix stiffness provides fertile soil for cancer stem cells[J/OL]. Cancer Cell Int, 2023, 23(1): 143 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/37468874/. DOI: 10.1186/s12935-023-02992-w.
[24]
KHARAISHVILI G, SIMKOVA D, BOUCHALOVA K, et al. The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance[J/OL]. Cancer Cell Int, 2014, 14: 41 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/24883045/. DOI: 10.1186/1475-2867-14-41.
[25]
SHIBATA M, ISHIKAWA A, ISHII J, et al. Stiffness of tongue squamous cell carcinoma measured using strain elastography correlates with the amount of collagen fibers in the tumor[J]. Oral Radiol, 2022, 38(2): 278-287. DOI: 10.1007/s11282-021-00556-0.
[26]
BRODERS-BONDON F, NGUYEN HO-BOULDOIRES T H, FERNANDEZ-SANCHEZ M E, et al. Mechanotransduction in tumor progression: the dark side of the force[J]. J Cell Biol, 2018, 217(5): 1571-1587. DOI: 10.1083/jcb.201701039.
[27]
ZAKARIA M A, AZIZ J, RAJAB N F, et al. Tissue rigidity increased during carcinogenesis of NTCU-induced lung squamous cell carcinoma in vivo[J/OL]. Biomedicines, 2022, 10(10): 2382 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/36289644/. DOI: 10.3390/biomedicines10102382.
[28]
WANG X L, LIN S, LYU G R. Advances in the clinical application of ultrasound elastography in uterine imaging[J/OL]. Insights Imaging, 2022, 13(1): 141 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/36057675/. DOI: 10.1186/s13244-022-01274-9.
[29]
GUO Y J, YAN X J, ZHAO H X, et al. Quantitative evaluation of the normal cervix, cervical cancer, and cervical precancerous changes via real-time shear wave elastography[J]. J Ultrasound Med, 2023, 42(2): 345-354. DOI: 10.1002/jum.15981.
[30]
FU B, ZHANG H, SONG Z W, et al. Value of shear wave elastography in the diagnosis and evaluation of cervical cancer[J]. Oncol Lett, 2020, 20(3): 2232-2238. DOI: 10.3892/ol.2020.11759.
[31]
MANCHANDA S, VORA Z, SHARMA R, et al. Quantitative sonoelastographic assessment of the normal uterus using shear wave elastography: an initial experience[J]. J Ultrasound Med, 2019, 38(12): 3183-3189. DOI: 10.1002/jum.15019.
[32]
HUANG S, INGBER D E. Cell tension, matrix mechanics, and cancer development[J]. Cancer Cell, 2005, 8(3): 175-176. DOI: 10.1016/j.ccr.2005.08.009.
[33]
LE L T, CAZARES O, MOUW J K, et al. Loss of miR-203 regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness[J]. J Cell Biol, 2016, 212(6): 707-719. DOI: 10.1083/jcb.201507054.
[34]
FAN Z H, CONG Y, ZHANG Z Y, et al. Shear wave elastography in rectal cancer staging, compared with endorectal ultrasonography and magnetic resonance imaging[J]. Ultrasound Med Biol, 2019, 45(7): 1586-1593. DOI: 10.1016/j.ultrasmedbio.2019.03.006.
[35]
DONG X Y, LI Q M, XUE W L, et al. Diagnostic performance of endorectal ultrasound combined with shear wave elastography for rectal tumors staging[J]. Clin Hemorheol Microcirc, 2023, 84(4): 399-411. DOI: 10.3233/CH-231716.
[36]
BHATLA N, BEREK J S, CUELLO FREDES M, et al. Revised FIGO staging for carcinoma of the cervix uteri[J]. Int J Gynaecol Obstet, 2019, 145(1): 129-135. DOI: 10.1002/ijgo.12749.
[37]
ZHANG J J, WANG Y T, CAO D Y, et al. MRI-based three-dimensional reconstruction for staging cervical cancer and predicting high-risk patients[J/OL]. Ann Transl Med, 2021, 9(18): 1398 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/34733950/. DOI: 10.21037/atm-21-2246.
[38]
JENA A, OBEROI R, RAWAL S, et al. Parametrial invasion in carcinoma of cervix: role of MRI measured tumour volume[J]. Br J Radiol, 2005, 78(936): 1075-1077. DOI: 10.1259/bjr/36116150.
[39]
ABU-RUSTUM N R, YASHAR C M, AREND R, et al. NCCN guidelines® insights: cervical cancer, version 1.2024[J]. J Natl Compr Canc Netw, 2023, 21(12): 1224-1233. DOI: 10.6004/jnccn.2023.0062.
[40]
SEINO M, NAGASE S, TOKUNAGA H, et al. Japan Society of Gynecologic Oncology 2022 guidelines for uterine cervical neoplasm treatment[J/OL]. J Gynecol Oncol, 2024, 35(1): e15 [2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/38037547/. DOI: 10.3802/jgo.2024.35.e15.
[41]
MA X. Preliminary evaluation of the application of transvaginal elastography in cervical cancer and its local invasion[D]. Suzhou: Soochow University, 2016.
[42]
MENG N, WANG X J, SUN J, et al. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer[J]. Eur Radiol, 2020, 30(10): 5758-5767. DOI: 10.1007/s00330-020-06884-9.
[43]
WU K, SUN H Z. Present situations and prospects of magnetic resonance imaging in the evaluation of treatment response of cervical cancer[J]. Chin J Magn Reson Imag, 2019, 10(10): 792-796. DOI: 10.12015/issn.1674-8034.2019.10.016.
[44]
XIE M, ZHANG X Y, ZHAN J, et al. Potential role of strain elastography for detection of the extent of large-scar endometriosis[J]. J Ultrasound Med, 2013, 32(9): 1635-1642. DOI: 10.7863/ultra.32.9.1635.

PREV Review on the application of MRI functional and quantitative imaging techniques in the diagnosis and treatment of cervical cancer
NEXT Radiomics analysis for prediction of lymph node metastasis after neoadjuvant chemotherapy based on pretreatment MRI in locally advanced cervical squamous cell carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn