Share:
Share this content in WeChat
X
Special Focus
The radiomics model based on APT for preoperative prediction of cervical cancer lymphovascular space invasion
AN Qi  ZHANG Qinhe  ZHONG Lin  MA Changjun  ZHANG Hanyue  LI Jun  WANG Siqi  LIN Liangjie  TIAN Shifeng  LIU Ailian 

Cite this article as: AN Q, ZHANG Q H, ZHONG L, et al. The radiomics model based on APT for preoperative prediction of cervical cancer lymphovascular space invasion[J]. Chin J Magn Reson Imaging, 2024, 15(8): 31-38. DOI:10.12015/issn.1674-8034.2024.08.005.


[Abstract] Objective To explore the value of amide proton transfer weighted imaging (APTw) radiomics in the preoperative assessment of lymphovascular space invasion (LVSI) in cervical cancer.Materials and Methods Retrospective analysis of 66 cases of pathologically confirmed cervical cancer and their imaging data. All patients underwent pelvic 3.0 T MRI examination, including axial T2WI, sagittal T2WI, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and 3D-APTw sequence scanning. Region of interest (ROI) within the tumor parenchyma were delineated on the APTw-T2WI fusion images, and APT values were recorded. Tumor lesions were segmented on the reconstructed APTw images, and radiomics features were extracted. Intra-class correlation coefficient (ICC) was employed to select radiomics features with good test-retest reliability both intra- and inter-observer assessments (ICC>0.900). Recursive feature elimination (RFE) and least absolute shrinkage and selection operator (LASSO) algorithms were employed for feature dimensionality reduction and selection. A clinical model, APTw radiomics model and combined model were constructed based on logistic regression classifier. The diagnostic performance and clinical utility of the models were evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). The predictive performance of different models was compared using the DeLong test.Results In the training set, the APTw radiomics model demonstrated higher efficacy in predicting cervical cancer LVSI compared to the clinical model (AUC=0.826 vs. 0.675), with statistically significant differences (DeLong test P<0.05). In the training set and the test set, the AUC values of the combined model were 0.838 and 0.825, respectively. DeLong test results showed that the combined model significantly outperformed the clinical model and APTw radiomics model in preoperative assessment of LVSI in the training set (all P<0.05). The decision curve demonstrated that the APTw radiomics model and the combined model exhibit higher clinical utility in both the train and test sets.Conclusions The radiomics model based on the APTw shows great potential in preoperatively predicting the LVSI status of patients with cervical cancer. Integration with clinical factors further enhances predictive performance, holding prospects to provide crucial support for individualized treatment and prognosis assessment of cervical cancer patients.
[Keywords] cervical cancer;lymphovascular space invasion;radiomics;magnetic resonance imaging;amide proton transfer weighted imaging;preoperative prediction

AN Qi1   ZHANG Qinhe1   ZHONG Lin2   MA Changjun3   ZHANG Hanyue1   LI Jun1   WANG Siqi1   LIN Liangjie4   TIAN Shifeng1   LIU Ailian1*  

1 Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

2 Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

3 Medical Department of Dalian University of Technology, Dalian 116011, China

4 Beijing Branch, Philips (China) Investment Co, Ltd. Beijing 100016, China

Corresponding author: LIU A L, E-mail: cjr.liuailian@vip.163.com

Conflicts of interest   None.

Received  2024-04-24
Accepted  2024-07-12
DOI: 10.12015/issn.1674-8034.2024.08.005
Cite this article as: AN Q, ZHANG Q H, ZHONG L, et al. The radiomics model based on APT for preoperative prediction of cervical cancer lymphovascular space invasion[J]. Chin J Magn Reson Imaging, 2024, 15(8): 31-38. DOI:10.12015/issn.1674-8034.2024.08.005.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
BUKKEMS L J H, JÜRGENLIEMK-SCHULZ I M, VAN DER LEIJ F, et al. The impact of para-aortic lymph node irradiation on disease-free survival in patients with cervical cancer: a systematic review and meta-analysis[J]. Clin Transl Radiat Oncol, 2022, 35: 97-103. DOI: 10.1016/j.ctro.2022.05.006.
[3]
BHATLA N, BEREK J S, CUELLO FREDES M, et al. Revised FIGO staging for carcinoma of the cervix uteri[J]. Int J Gynaecol Obstet, 2019, 145(1): 129-135. DOI: 10.1002/ijgo.12749.
[4]
BALAYA V, GUANI B, MAGAUD L, et al. Validation of the 2018 FIGO classification for cervical cancer: lymphovascular space invasion should be considered in IB1 stage[J/OL]. Cancers, 2020, 12(12): 3554 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760679. DOI: 10.3390/cancers12123554.
[5]
GASHU C, TASFA B, ALEMU C, et al. Assessing survival time of outpatients with cervical cancer: at the university of Gondar referral hospital using the Bayesian approach[J/OL]. BMC Womens Health, 2023, 23(1): 59 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921662. DOI: 10.1186/s12905-023-02202-9.
[6]
HUANG Y, WEN W B, LI X D, et al. Prognostic value of lymphovascular space invasion in stage IA to IIB cervical cancer: a meta-analysis[J/OL]. Medicine, 2023, 102(15): e33547 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101290. DOI: 10.1097/MD.0000000000033547.
[7]
BHATLA N, AOKI D, SHARMA D N, et al. Cancer of the cervix uteri: 2021 update[J]. Int J Gynaecol Obstet, 2021, 155(Suppl 1): 28-44. DOI: 10.1002/ijgo.13865.
[8]
CIBULA D, RASPOLLINI M R, PLANCHAMP F, et al. ESGO/ESTRO/ESP Guidelines for the management of patients with cervical cancer-Update 2023[J]. Int J Gynecol Cancer, 2023, 33(5): 649-666. DOI: 10.1136/ijgc-2023-004429.
[9]
WANG Y, CHEN X, PU H, et al. Roles of DWI and T2-weighted MRI volumetry in the evaluation of lymph node metastasis and lymphovascular invasion of stage IB-IIA cervical cancer[J]. Clin Radiol, 2022, 77(3): 224-230. DOI: 10.1016/j.crad.2021.12.011.
[10]
WANG W, FAN X F, YANG J, et al. Preliminary MRI study of extracellular volume fraction for identification of lymphovascular space invasion of cervical cancer[J]. J Magn Reson Imaging, 2023, 57(2): 587-597. DOI: 10.1002/jmri.28423.
[11]
LI S J, ZHANG Z X, LIU J, et al. The feasibility of a radial turbo-spin-echo T2 mapping for preoperative prediction of the histological grade and lymphovascular space invasion of cervical squamous cell carcinoma[J/OL]. Eur J Radiol, 2021, 139: 109684 [2024-04-06]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(21)00164-9. DOI: 10.1016/j.ejrad.2021.109684.
[12]
MI H L, SUO S T, CHENG J J, et al. The invasion status of lymphovascular space and lymph nodes in cervical cancer assessed by mono-exponential and bi-exponential DWI-related parameters[J]. Clin Radiol, 2020, 75(10): 763-771. DOI: 10.1016/j.crad.2020.05.024.
[13]
SONG Q L, TIAN S F, MA C J, et al. Amide proton transfer weighted imaging combined with dynamic contrast-enhanced MRI in predicting lymphovascular space invasion and deep stromal invasion of IB1-IIA1 cervical cancer[J/OL]. Front Oncol, 2022, 12: 916846 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512406. DOI: 10.3389/fonc.2022.916846.
[14]
LI S J, LIU J, ZHANG W H, et al. T1 mapping and multimodel diffusion-weighted imaging in the assessment of cervical cancer: a preliminary study[J/OL]. Br J Radiol, 2023, 96(1148): 20220952 [2024-04-06]. https://academic.oup.com/bjr/article-abstract/96/1148/20220952/7469156. DOI: 10.1259/bjr.20220952.
[15]
LI S J, LIU J, ZHANG F F, et al. Novel T2 mapping for evaluating cervical cancer features by providing quantitative T2 maps and synthetic morphologic images: a preliminary study[J]. J Magn Reson Imaging, 2020, 52(6): 1859-1869. DOI: 10.1002/jmri.27297.
[16]
ZHOU J Y, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[17]
MENG N, WANG X J, SUN J, et al. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer[J]. Eur Radiol, 2020, 30(10): 5758-5767. DOI: 10.1007/s00330-020-06884-9.
[18]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[19]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[20]
DU W, WANG Y, LI D D, et al. Preoperative prediction of lymphovascular space invasion in cervical cancer with radiomics-based nomogram[J/OL]. Front Oncol, 2021, 11: 637794 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8311659. DOI: 10.3389/fonc.2021.637794.
[21]
WANG S X, LIU X W, WU Y, et al. Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study[J/OL]. Front Oncol, 2023, 13: 1252074 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637586. DOI: 10.3389/fonc.2023.1252074.
[22]
WU Y, WANG S X, CHEN Y Q, et al. A multicenter study on preoperative assessment of lymphovascular space invasion in early-stage cervical cancer based on multimodal MR radiomics[J]. J Magn Reson Imaging, 2023, 58(5): 1638-1648. DOI: 10.1002/jmri.28676.
[23]
WU Q X, SHI D P, DOU S W, et al. Radiomics analysis of multiparametric MRI evaluates the pathological features of cervical squamous cell carcinoma[J]. J Magn Reson Imaging, 2019, 49(4): 1141-1148. DOI: 10.1002/jmri.26301.
[24]
HUANG G, CUI Y Q, WANG P, et al. Multi-parametric magnetic resonance imaging-based radiomics analysis of cervical cancer for preoperative prediction of lymphovascular space invasion[J/OL]. Front Oncol, 2021, 11: 663370 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790703. DOI: 10.3389/fonc.2021.663370.
[25]
WU M H, JIANG T L, GUO M, et al. Amide proton transfer-weighted imaging and derived radiomics in the classification of adult-type diffuse gliomas[J]. Eur Radiol, 2024, 34(5): 2986-2996. DOI: 10.1007/s00330-023-10343-6.
[26]
MENG X, TIAN S F, MA C J, et al. APTw combined with mDixon-Quant imaging to distinguish the differentiation degree of cervical squamous carcinoma[J/OL]. Front Oncol, 2023, 13: 1105867 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905693. DOI: 10.3389/fonc.2023.1105867.
[27]
HOU M Y, SONG K, REN J P, et al. Comparative analysis of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in evaluating the histological grade of cervical squamous carcinoma[J/OL]. BMC Cancer, 2022, 22(1): 87 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780242. DOI: 10.1186/s12885-022-09205-z.
[28]
DENG X J, LIU M L, ZHOU Q, et al. Predicting treatment response to concurrent chemoradiotherapy in squamous cell carcinoma of the cervix using amide proton transfer imaging and intravoxel incoherent motion imaging[J]. Diagn Interv Imaging, 2022, 103(12): 618-624. DOI: 10.1016/j.diii.2022.09.001.
[29]
LI S J, LIU J, ZHANG Z X, et al. Added-value of 3D amide proton transfer MRI in assessing prognostic factors of cervical cancer: a comparative study with multiple model diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2023, 13(12): 8157-8172. DOI: 10.21037/qims-23-324.
[30]
KIM J, CHOI S J, LEE S H, et al. Predicting survival using pretreatment CT for patients with hepatocellular carcinoma treated with transarterial chemoembolization: comparison of models using radiomics[J]. AJR Am J Roentgenol, 2018, 211(5): 1026-1034. DOI: 10.2214/AJR.18.19507.
[31]
YU H W, MENG X Q, CHEN H, et al. Correlation between mammographic radiomics features and the level of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer[J/OL]. Front Oncol, 2020, 10: 412 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174560. DOI: 10.3389/fonc.2020.00412.
[32]
SCAPICCHIO C, GABELLONI M, BARUCCI A, et al. A deep look into radiomics[J]. Radiol Med, 2021, 126(10): 1296-1311. DOI: 10.1007/s11547-021-01389-x.
[33]
XU Q H, ZHAO Y, WANG Y, et al. Value of texture analysis based on R2*map for predicting early recurrence of HCC after hepatectomy[J]. Chin J Magn Reson Imag, 2022, 13(12): 87-92. DOI: 10.12015/issn.1674-8034.2022.12.015.
[34]
ZHANG J, LIU J Y, LIANG Z P, et al. Differentiation of acute and chronic vertebral compression fractures using conventional CT based on deep transfer learning features and hand-crafted radiomics features[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 165 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987077. DOI: 10.1186/s12891-023-06281-5.
[35]
XU A Q, CHU X F, ZHANG S J, et al. Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma[J/OL]. BMC Cancer, 2022, 22(1): 872 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364617. DOI: 10.1186/s12885-022-09967-6.
[36]
LEE S H, CHO H H, KWON J, et al. Are radiomics features universally applicable to different organs?[J/OL]. Cancer Imaging, 2021, 21(1): 31 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028225. DOI: 10.1186/s40644-021-00400-y.
[37]
ZHOU X Z, YI Y J, LIU Z Y, et al. Radiomics-based pretherapeutic prediction of non-response to neoadjuvant therapy in locally advanced rectal cancer[J]. Ann Surg Oncol, 2019, 26(6): 1676-1684. DOI: 10.1245/s10434-019-07300-3.
[38]
JIA Y J, YANG X T, CUI Y F, et al. Multiparameter magnetic resonance imaging-based radiomics model for the preoperative prediction of lymph-vascular space invasion in cervical squamous carcinoma[J]. Chin J Anat Clin, 2022, 27(11): 737-744. DOI: 10.3760/cma.j.cn101202-20220307-00070.
[39]
HOU L N, CUI Y F, GUO L Y, et al. Multiparametric magnetic resonance imaging-based radiomics model for the preoperative prediction of lymph node metastasis in cervical cancer[J]. Chin J Anat Clin, 2020, 25(3): 213-220. DOI: 10.3760/cma.j.cn101202-20200310-00074.
[40]
JIANG W Y, CUI L P, JIN Y, et al. MRI-based radiomics model for predicting the lymph-vascular space invasion status of cervical cancer patients[J]. Oncoradiology, 2021, 30(1): 43-49. DOI: 10.19732/j.cnki.2096-6210.2021.01.007.
[41]
CUI Y Q, HUANG G, WANG L L, et al. Clinical-radiomic analysis of multi-parametric magnetic resonance imaging predicts lymphovascular space invasion and outcomes in cervical cancer[J]. Chin J Magn Reson Imag, 2023, 14(2): 73-82. DOI: 10.12015/issn.1674-8034.2023.02.013.

PREV Prediction of lymphovascular space invasion in locally advanced cervical cancer patients after neoadjuvant chemotherapy based on pre-treatment multi-parameter MRI radiomics features
NEXT The value of amide proton transfer weighted combined with dynamic contrast-enhanced MRI in evaluating cervical cancer nerve invasion
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn