Share:
Share this content in WeChat
X
Special Focus
The value of amide proton transfer weighted combined with dynamic contrast-enhanced MRI in evaluating cervical cancer nerve invasion
ZHANG Qianyu  LIU Jiashen  TIAN Shifeng  ZHANG Qinhe  SONG Qingling  CHEN Lihua  MA Changjun  WANG Nan  LIN Liangjie  WANG Jiazheng  LIU Ailian 

Cite this article as: ZHANG Q Y, LIU J S, TIAN S F, et al. The value of amide proton transfer weighted combined with dynamic contrast-enhanced MRI in evaluating cervical cancer nerve invasion[J]. Chin J Magn Reson Imaging, 2024, 15(8): 39-45. DOI:10.12015/issn.1674-8034.2024.08.006.


[Abstract] Objective To explore the value of amide proton transfer weighted (APTw) combined with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) sequence in evaluating perineural invasion (PNI) of cervical cancer.Materials and Methods A retrospective analysis was conducted on 36 patients who underwent pelvic 3.0 T MRI examination (including APTw and DCE-MRI sequences) and were confirmed to have cervical cancer by surgical pathology. Among them, there were 12 cases in the PNI group and 24 cases in the non-PNI (NPNI) group. Two observers measured the APT value and DCE-MRI quantitative parameter values of the lesion, including volume transfer constant (Ktrans), exchange rate between EES and blood plasma (Kep), extravascular volume fraction (Ve), and capillary plasma volume (Vp). The mean of the measurements was then taken for statistical analysis. Using intra-class correlation coefficient (ICC) to test the consistency of the measurement results of two observers for each parameter value; Kolmogorov-Smirov test was used to determine whether the data conforms to a normal distribution. Two independent sample t-tests or Mann-Whitney U-tests were used to compare the differences in parameter values between the two groups. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of the parameters with differences, and the corresponding area under the curve (AUC), threshold, sensitivity, and specificity were obtained. Calculate the joint diagnostic efficacy of differential parameters using binary logistic regression, and compare the AUC of each parameter and the joint parameter using DeLong test. Use Spearman correlation to detect the correlation between APT values and differential DCE-MRI parameters.Results The APT values, Ktrans values, Kep values, Ve values, and Vp values measured by the two observers showed good consistency, with ICC values greater than 0.75. The difference in APT and Vp values between the two groups was statistically significant (P<0.05), while the difference in Ktrans, Kep, and Ve was not statistically significant (P>0.05). The APT value (2.89%±0.72%) and Vp value [7.80×10-3 (6.80×10-3, 1.14×10-2)] of the PNI group were both higher than those of the NPNI group [APT value 2.31% ± 0.71%; Vp value 4.19×10-3 (2.04×10-3, 7.35×10-3)]. The AUC for evaluating the APT value and Vp value of cervical cancer PNI were 0.717 and 0.785, respectively; the thresholds are 2.7% and 6.46×10-3, respectively, and the sensitivity and specificity are 66.7% and 75.0%, 83.3% and 75.0%, respectively. The AUC of APT value combined with Vp value is 0.792; there was no statistically significant difference (P>0.05) between the APT value, Vp value, and the AUC of the combined evaluation of PNI. There is no correlation between APT value and Vp value (r=0.219, P=0.198).Conclusions The quantitative parameters of APTw sequence and DCE-MRI can effectively predict cervical cancer PNI, which has certain clinical application value.
[Keywords] cervical cancer;amide proton transfer imaging;dynamic contrast enhanced magnetic resonance imaging;magnetic resonance imaging;peripheral nerve invasion

ZHANG Qianyu1   LIU Jiashen2   TIAN Shifeng1   ZHANG Qinhe1   SONG Qingling1   CHEN Lihua1   MA Changjun3   WANG Nan1   LIN Liangjie4   WANG Jiazheng4   LIU Ailian1*  

1 Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

2 Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

3 Medical Department of Dalian University of Technology, Dalian 116011, China

4 Beijing Branch, Philips (China) Investment Co., Ltd, Beijing 100016, China

Corresponding author: LIU A L, E-mail: cjr.liuailian@vip.163.com

Conflicts of interest   None.

Received  2024-04-09
Accepted  2024-07-09
DOI: 10.12015/issn.1674-8034.2024.08.006
Cite this article as: ZHANG Q Y, LIU J S, TIAN S F, et al. The value of amide proton transfer weighted combined with dynamic contrast-enhanced MRI in evaluating cervical cancer nerve invasion[J]. Chin J Magn Reson Imaging, 2024, 15(8): 39-45. DOI:10.12015/issn.1674-8034.2024.08.006.

[1]
ZHENG R S, CHEN R, HAN B F, et al. Cancer incidence and mortality in China, 2022[J]. Zhonghua Zhong Liu Za Zhi, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.
[2]
COHEN P A, JHINGRAN A, OAKNIN A, et al. Cervical cancer[J]. Lancet, 2019, 393(10167): 169-182. DOI: 10.1016/S0140-6736(18)32470-X.
[3]
CRONIN K A, SCOTT S, FIRTH A U, et al. Annual report to the nation on the status of cancer, part 1: national cancer statistics[J]. Cancer, 2022, 128(24): 4251-4284. DOI: 10.1002/cncr.34479.
[4]
LI J N, LIU G M, LUO J Y, et al. Cervical cancer prognosis and related risk factors for patients with cervical cancer: a long-term retrospective cohort study[J/OL]. Sci Rep, 2022, 12(1): 13994 [2023-10-08]. https://pubmed.ncbi.nlm.nih.gov/35978078/. DOI: 10.1038/s41598-022-17733-8.
[5]
AL-SUKHNI E, ATTWOOD K, GABRIEL E M, et al. Lymphovascular and perineural invasion are associated with poor prognostic features and outcomes in colorectal cancer: a retrospective cohort study[J]. Int J Surg, 2017, 37: 42-49. DOI: 10.1016/j.ijsu.2016.08.528.
[6]
CAO Y H, DENG S H, YAN L Z, et al. Perineural invasion is associated with poor prognosis of colorectal cancer: a retrospective cohort study[J]. Int J Colorectal Dis, 2020, 35(6): 1067-1075. DOI: 10.1007/s00384-020-03566-2.
[7]
SHI R J, KE B W, TANG Y L, et al. Perineural invasion: a potential driver of cancer-induced pain[J/OL]. Biochem Pharmacol, 2023, 215: 115692 [2024-03-09]. https://pubmed.ncbi.nlm.nih.gov/37481133/. DOI: 10.1016/j.bcp.2023.115692.
[8]
HU J M, CHEN W Z, SHEN L S, et al. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression[J/OL]. Biochim Biophys Acta Rev Cancer, 2022, 1877(6): 188828 [2024-06-09]. https://pubmed.ncbi.nlm.nih.gov/36283598/. DOI: 10.1016/j.bbcan.2022.188828.
[9]
CHEN X L, DUAN H, ZHAO H W, et al. Perineural invasion in cervical cancer: a multicenter retrospective study[J/OL]. Eur J Surg Oncol, 2024, 50(6): 108313 [2024-06-09]. https://pubmed.ncbi.nlm.nih.gov/38579659/. DOI: 10.1016/j.ejso.2024.108313.
[10]
LIEBIG C, AYALA G, WILKS J A, et al. Perineural invasion in cancer: a review of the literature[J]. Cancer, 2009, 115(15): 3379-3391. DOI: 10.1002/cncr.24396.
[11]
LI J B, KANG R, TANG D L. Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma[J]. Cancer Commun, 2021, 41(8): 642-660. DOI: 10.1002/cac2.12188.
[12]
MARCHESI F, PIEMONTI L, MANTOVANI A, et al. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis[J]. Cytokine Growth Factor Rev, 2010, 21(1): 77-82. DOI: 10.1016/j.cytogfr.2009.11.001.
[13]
SAKURAGI N. Nerve-sparing radical hysterectomy: time for a new standard of care for cervical cancer?[J]. J Gynecol Oncol, 2015, 26(2): 81-82. DOI: 10.3802/jgo.2015.26.2.81.
[14]
HUANG T, FAN Q, WANG Y W, et al. Schwann cell-derived CCL2 promotes the perineural invasion of cervical cancer[J/OL]. Front Oncol, 2020, 10: 19 [2023-11-07]. https://pubmed.ncbi.nlm.nih.gov/32064233/. DOI: 10.3389/fonc.2020.00019.
[15]
SONG Q L, TIAN S F, MA C J, et al. Amide proton transfer weighted imaging combined with dynamic contrast-enhanced MRI in predicting lymphovascular space invasion and deep stromal invasion of IB1-IIA1 cervical cancer[J/OL]. Front Oncol, 2022, 12: 916846 [2023-10-22]. https://pubmed.ncbi.nlm.nih.gov/36172148/. DOI: 10.3389/fonc.2022.916846.
[16]
ZHANG Q, GUO J X, OUYANG H, et al. Added-value of dynamic contrast-enhanced MRI on prediction of tumor recurrence in locally advanced cervical cancer treated with chemoradiotherapy[J]. Eur Radiol, 2022, 32(4): 2529-2539. DOI: 10.1007/s00330-021-08279-w.
[17]
HUANG Q H, WANG Y C, MENG X Y, et al. Amide proton transfer-weighted imaging combined with ZOOMit diffusion kurtosis imaging in predicting lymph node metastasis of cervical cancer[J/OL]. Bioengineering, 2023, 10(3): 331 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/36978722/. DOI: 10.3390/bioengineering10030331.
[18]
ADEBANJI A, ASAMOAH-BOAHENG M, OSEI-TUTU O. Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples[J/OL]. Springerplus, 2016, 5: 102 [2023-10-27]. https://pubmed.ncbi.nlm.nih.gov/26877900/. DOI: 10.1186/s40064-016-1718-3.
[19]
XIE Y H, QIAN Y F, LIU X, et al. Value of the diffusion weighted imaging and dynamic contrast enhanced MRI for diagnosis of neurovascu- lar invasion of rectal cancer[J]. Radiol Pract, 2021, 36(5): 637-641. DOI: 10.13609/j.cnki.1000-0313.2021.05.013.
[20]
WANG L H, MENG Y K, LI S D, et al. Correlation analysis between quantitative parameters of incoherent motion in MR voxel and vascular and neural invasion in rectal adenocarcinoma[J]. J Pract Radiol, 2023, 39(3): 408-412. DOI: 10.3969/j.issn.1002-1671.2023.03.016.
[21]
KONG Y Q, QU Q Q, MING L, et al. Research progress of amidine proton transfer imaging in genitourinary system disease[J]. Chin J Magn Reson Imag, 2021, 12(10): 118-120. DOI: 10.12015/issn.1674-8034.2021.10.031.
[22]
MENG N, WANG X J, SUN J, et al. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer[J]. Eur Radiol, 2020, 30(10): 5758-5767. DOI: 10.1007/s00330-020-06884-9.
[23]
CHEN G Q, ZHENG Z, SUN H, et al. Dedifferentiated Schwann cells promote perineural invasion mediated by the PACAP paracrine signalling in cervical cancer[J]. J Cell Mol Med, 2023, 27(23): 3692-3705. DOI: 10.1111/jcmm.17897.
[24]
MENG X, LIU A L. Progress on application of amide proton transfer imaging in uterine MRI examination[J]. Chin J Med Imag, 2023, 31(4): 413-417. DOI: 10.3969/j.issn.1005-5185.2023.04.023.
[25]
HOU M Y, SONG K, REN J P, et al. Comparative analysis of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in evaluating the histological grade of cervical squamous carcinoma[J/OL]. BMC Cancer, 2022, 22(1): 87 [2023-10-22]. https://pubmed.ncbi.nlm.nih.gov/35057777/. DOI: 10.1186/s12885-022-09205-z.
[26]
HAMEEDUDDIN A, SAHDEV A. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies[J/OL]. Cancer Imaging, 2015, 15(1): 3 [2023-10-19]. https://pubmed.ncbi.nlm.nih.gov/25889065/. DOI: 10.1186/s40644-015-0037-1.
[27]
ZHENG D C, YUE Q Y, REN W, et al. Early responses assessment of neoadjuvant chemotherapy in nasopharyngeal carcinoma by serial dynamic contrast-enhanced MR imaging[J]. Magn Reson Imaging, 2017, 35: 125-131. DOI: 10.1016/j.mri.2016.08.011.
[28]
HILLESTAD T, HOMPLAND T, FJELDBO C S, et al. MRI distinguishes tumor hypoxia levels of different prognostic and biological significance in cervical cancer[J]. Cancer Res, 2020, 80(18): 3993-4003. DOI: 10.1158/0008-5472.CAN-20-0950.
[29]
YE Z J, NING G, LI X S, et al. Endometrial carcinoma: use of tracer kinetic modeling of dynamic contrast-enhanced MRI for preoperative risk assessment[J/OL]. Cancer Imaging, 2022, 22(1): 14 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/35264244/. DOI: 10.1186/s40644-022-00452-8.
[30]
ŁOZIŃSKI T, CIEBIERA M, ŁUCZYŃSKA E, et al. Magnetic resonance-guided high-intensity focused ultrasound ablation of uterine fibroids-efficiency assessment with the use of dynamic contrast-enhanced magnetic resonance imaging and the potential role of the administration of uterotonic drugs[J/OL]. Diagnostics, 2021, 11(4): 715 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/33923667/. DOI: 10.3390/diagnostics11040715.
[31]
MARKIET K, GLINSKA A, NOWICKI T, et al. Feasibility of intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in differentiation of benign parotid gland tumors[J/OL]. Biology, 2022, 11(3): 399 [2024-02-16]. https://pubmed.ncbi.nlm.nih.gov/35336773/. DOI: 10.3390/biology11030399.
[32]
LI X X, LIN T T, LIU B, et al. Diagnosis of cervical cancer with parametrial invasion on whole-tumor dynamic contrast-enhanced magnetic resonance imaging combined with whole-lesion texture analysis based on T2- weighted images[J/OL]. Front Bioeng Biotechnol, 2020, 8: 590 [2024-03-25]. https://pubmed.ncbi.nlm.nih.gov/32596230/. DOI: 10.3389/fbioe.2020.00590.
[33]
JACKSON A, O'CONNOR J P B, PARKER G J M, et al. Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging[J]. Clin Cancer Res, 2007, 13(12): 3449-3459. DOI: 10.1158/1078-0432.CCR-07-0238.
[34]
LIN K, LUO F, WANG Z W. Value of DCE-MRI quantitative and semi-quantitative analysis in the differential diagnosis of benign and malignant colorectal tumors[J]. Radiol Pract, 2023, 38(5): 587-592. DOI: 10.13609/j.cnki.1000-0313.2023.05.010.
[35]
NAGASAKA K, SATAKE H, ISHIGAKI S, et al. Histogram analysis of quantitative pharmacokinetic parameters on DCE-MRI: correlations with prognostic factors and molecular subtypes in breast cancer[J]. Breast Cancer, 2019, 26(1): 113-124. DOI: 10.1007/s12282-018-0899-8.

PREV The radiomics model based on APT for preoperative prediction of cervical cancer lymphovascular space invasion
NEXT Intra- and peritumoral sagittal T2WI radiomics nomogram for preoperative prediction of patients with stage ⅠB and stage ⅡA cervical cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn