Share:
Share this content in WeChat
X
Clinical Article
A resting-state functional magnetic resonance imaging study of abnormal brain function in patients with Internet gaming disorder
CHEN Jun  ZHANG Yong  NIU Xiaoyu  ZHANG Mengzhe  MA Longyao  CHENG Jingliang 

Cite this article as: CHEN J, ZHANG Y, NIU X Y, et al. A resting-state functional magnetic resonance imaging study of abnormal brain function in patients with Internet gaming disorder[J]. Chin J Magn Reson Imaging, 2024, 15(8): 59-64. DOI:10.12015/issn.1674-8034.2024.08.009.


[Abstract] Objective To explore the changes of local intrinsic brain connectivity in the resting state of Internet gaming disorder (IGD) using a combination of regional homogeneity (ReHo) and functional connectivity (FC).Materials and Methods Resting-state functional magnetic resonance imaging (rs-fMRI) was performed on 44 patients with IGD and 49 healthy controls with matching age, sex, and years of education. The ReHo of the two groups was calculated and compared to detect the changes of local connections in the brain of IGD patients. FC was performed with ReHo abnormal brain regions to obtain changes in the connectivity of different brain regions. The Internet Addiction Test (IAT) was used to assess the severity of Internet gaming disorder. Pearson correlation analysis was used to assess the relationship between brain regions with ReHo alterations and IAT scores.Results In the IGD group, the bilateral medial superior frontal gyrus, bilateral dorsolateral superior frontal gyrus, left auxiliary motor area, and right middle frontal gyrus increased ReHo. Left inferior occipital gyrus, left middle occipital gyrus, left lingual gyrus, left calcarine sulcus cortex, left fusiform gyrus, left superior temporal gyrus, and left cerebellar ReHo are reduced (voxel level P<0.005, mass level P<0.05, Gaussian random field correction). In the IGD group, the functional connectivity of the right dorsolateral superior frontal gyrus and the right superior frontal gyrus, bilateral accessory motor areas, and right precentral gyrus was increased (voxel level P<0.005, mass level P<0.05, Gaussian random field correction). In addition, the ReHo value of the cortex around the left calcarine sulcus cortex was negatively correlated with the IAT score.Conclusions Alterations in local connections in the prefrontal cortex and temporal-occipital cortex may indicate that cognitive control and reward processing and visual and auditory networks in IGD have been affected. In addition, the ReHo value of the cortex around the left calcarine sulcus cortex was negatively correlated with the IAT score, which may provide a new understanding of the neuropathological mechanism of IGD.
[Keywords] Internet gaming disorder;resting-state functional magnetic resonance imaging;magnetic resonance imaging;regional homogeneity;functional connectivity

CHEN Jun   ZHANG Yong*   NIU Xiaoyu   ZHANG Mengzhe   MA Longyao   CHENG Jingliang  

Department of Magnetic Resonance, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China

Corresponding author: ZHANG Y, E-mail: zzuzhangyong2013@163.com

Conflicts of interest   None.

Received  2023-12-19
Accepted  2024-07-30
DOI: 10.12015/issn.1674-8034.2024.08.009
Cite this article as: CHEN J, ZHANG Y, NIU X Y, et al. A resting-state functional magnetic resonance imaging study of abnormal brain function in patients with Internet gaming disorder[J]. Chin J Magn Reson Imaging, 2024, 15(8): 59-64. DOI:10.12015/issn.1674-8034.2024.08.009.

[1]
WANG X, ZHANG Y, et al. Treatments of Internet gaming disorder and comorbid mental disorders: A systematic review and meta-analysis[J/OL]. Computers in Human Behavior, 2023, 149: 107947 [2024-03-27]. http://dx.doi.org/10.1016/j.chb.2023.107947. DOI: 10.1016/j.chb.2023.107947.
[2]
DARVESH N, RADHAKRISHNAN A, LACHANCE C C, et al. Exploring the prevalence of gaming disorder and Internet gaming disorder: A rapid scoping review[J]. Systematic reviews, 2020, 9: 1-10. DOI: 10.1186/s13643-020-01329-2.
[3]
BRAND M. Can internet use become addictive?[J]. Science, 2022, 376(6595): 798-799. DOI: 10.1126/science.abn4189.
[4]
CASALE S, MUSICO A, SCHIMMENTI A. Beyond internalizing and externalizing symptoms: The association between body disconnection and the symptoms of Internet gaming disorder[J/OL]. Addict Behav2021, 123: 107043 [2023-10-28]. https://sci-hub.ilibs.cn/10.1016/j.addbeh.2021.107043. DOI: 10.1016/j.addbeh.2021.107043.
[5]
KOWAL M, CONROY E, RAMSBOTTOM N, et al. Gaming your mental health: a narrative review on mitigating symptoms of depression and anxiety using commercial video games[J/OL]. JMIR Serious Games2021, 9(2): e26575 [2023-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277305. DOI: 10.2196/26575.
[6]
OHAYON M M, ROBERTS L. Internet gaming disorder and comorbidities among campus-dwelling U.S. university students[J/OL]. Psychiatry Res, 2021, 302: 114043 [2023-10-28]. https://sci-hub.ilibs.cn/10.1016/j.psychres.2021.114043. DOI: 10.1016/j.psychres.2021.114043.
[7]
RAMAZAN Y. An exploratory examination of the relationship between Internet gaming disorder, smartphone addiction, social appearance anxiety and aggression among undergraduate students[J/OL]. Journal of Affective Disorders Reports, 2023, 11: 100483 [2024-3-27]. http://dx.doi.org/10.1016/j.jadr.2023.100483. DOI: 10.1016/j.jadr.2023.100483.
[8]
ZHANG J, ZHOU H, GENG F, et al. Internet gaming disorder increases mind-wandering in young adults[J/OL]. Front Psychol, 2020, 11: 619072 [2023-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876259. DOI: 10.3389/fpsyg.2020.619072.
[9]
REED G M, FIRST M B, KOGAN C S, et al. Innovations and changes in the ICD-11 classification of mental, behavioural and neurodevelopmental disorders[J]. World psychiatry, 2019, 18(1): 3-19. DOI: 10.1002/wps.20611.
[10]
ZUO X N, XU T, JIANG L, et al. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space[J]. NeuroImage, 2013, 65: 374-386. DOI: 10.1016/j.neuroimage.2012.10.017.
[11]
WU X, BAI F, WANG Y, et al. Circadian rhythm disorders and corresponding functional brain abnormalities in young female nurses: A preliminary study[J/OL]. Front Neurol, 2021, 12: 664610 [2023-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120025. DOI: 10.3389/fneur.2021.664610.
[12]
FU C, ZHANG H, XUAN A, et al. A combined study of (18)F-FDG PET-CT and fMRI for assessing resting cerebral function in patients with major depressive disorder[J]. Exp Ther Med, 2018, 16(3): 1873-1881. DOI: 10.3892/etm.2018.6434.
[13]
ZHANG M, GAO X, YANG Z, et al. Weight status modulated brain regional homogeneity in long-term male smokers[J/OL]. Front Psychiatry, 2022, 13: 857479 [2023-10-28]. https://pubmed.ncbi.nlm.nih.gov/35733797/. DOI: 10.3389/fpsyt.2022.857479.
[14]
LIU P, TU H, ZHANG A, et al. Brain functional alterations in MDD patients with somatic symptoms: a resting-state fMRI study[J]. J Affect Disord, 2021, 295: 788-796. DOI: 10.1016/j.jad.2021.08.143.
[15]
LIN H, CAI X, ZHANG D, et al. Functional connectivity markers of depression in advanced Parkinson's disease[J/OL]. NeuroImage: Clinical, 2020, 25: 102130 [2023-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6931212. DOI: 10.1016/j.nicl.2019.102130.
[16]
WANG T, YE Y, LI S, et al. Altered functional connectivity of anterior cingulate cortex in chronic insomnia: A resting-state fMRI study[J]. Sleep Medicine, 2023, 102: 46-51. DOI: 10.1016/j.sleep.2022.11.036.
[17]
LI K, TIAN Y, CHEN H, et al. Temporal dynamic alterations of regional homogeneity in Parkinson's disease: A resting-state fMRI study[J/OL]. Biomolecules, 2023, 13(6):888 [2023-10-28]. https://pubmed.ilibs.cn/37371468. DOI: 10.3390/biom13060888.
[18]
TAKAHASHI Y, MURATA S, UEKI M, et al. Interaction between functional connectivity and neural excitability in autism: A novel framework for computational modeling and application to biological data[J]. Computational Psychiatry, 2023, 7(1): 14-29. DOI: 10.5334/cpsy.93.
[19]
DONG G H, WANG Z, DONG H, et al. More stringent criteria are needed for diagnosing Internet gaming disorder: Evidence from regional brain features and whole-brain functional connectivity multivariate pattern analyses[J]. J Behav Addict, 2020, 9(3): 642-653. DOI: 10.1556/2006.2020.00065.
[20]
JIANG W, LIU X, XU Z, et al. Association between gaming disorder and regional homogeneity in highly involved male adult gamers: A pilot resting‐state fMRI study[J/OL]. Brain Behav, 2023, 13(12): e3315 [2023-10-28]. https://pubmed.ncbi.nlm.nih.gov/37932960/. DOI: 10.1002/brb3.3315.
[21]
NIU X Y, GAO X Y, Zhang M Z, et al. Static and dynamic changes of intrinsic brain local connectivity in Internet gaming disorder[J/OL]. BMC psychiatry, 2023, 23(1): 578 [2023-10-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410779. DOI: 10.1186/s12888-023-05009-y.
[22]
LIU X, ZHENG Y, NICULESCU M, et al. The involvement of spontaneous brain activity in natural recovery from Internet gaming disorder: A resting-state fMRI study[J/OL]. Front Psychiatry, 2023, 14: 1093784 [2024-03-27]. https://pubmed.ncbi.nlm.nih.gov/36896348/. DOI: 10.3389/fpsyt.2023.1093784.
[23]
HAN S Q, WANG X, HE Z L, et al. Decreased static and increased dynamic global signal topography in major depressive disorder[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 94: 109665 [2023-10-28]. https://scihub.ilibs.cn/10.1016/j.pnpbp.2019.109665. DOI: 10.1016/j.pnpbp.2019.109665.
[24]
ZHANG J F, MAGIONCALDA P, HUANG Z R, et al. Altered global signal topography and its different regional localization in motor cortex and Hippocampus in Mania and depression[J]. Schizophr Bull, 2019, 45(4): 902-910. DOI: 10.1093/schbul/sby138.
[25]
SHIROTA Y, HANAJIMA R, OHMINAMI S, et al. Supplementary motor area plays a causal role in automatic inhibition of motor responses[J]. Brain Stimul, 2019, 12(4): 1020-1026. DOI: 10.1016/j.brs.2019.03.002.
[26]
HARTWELL K J, JOHNSON K A, LI X, et al. Neural correlates of craving and resisting craving for tobacco in nicotine dependent smokers[J]. Addict Biol, 2011, 16(4): 654-666. DOI: 10.1111/j.1369-1600.2011.00340.x.
[27]
LUBMAN D I, YUCEL M, PANTELIS C. Addiction, a condition of compulsive behaviour? Neuroimaging and neuropsychological evidence of inhibitory dysregulation[J]. Addiction, 2004, 99(12): 1491-502. DOI: 10.1111/j.1360-0443.2004.00808.x.
[28]
NOEL X, BREVERS D, BECHARA A. A neurocognitive approach to understanding the neurobiology of addiction[J]. Curr Opin Neurobiol, 2013, 23(4): 632-638. DOI: 10.1016/j.conb.2013.01.018.
[29]
WANG M, DONG H, ZHENG H, et al. Inhibitory neuromodulation of the putamen to the prefrontal cortex in Internet gaming disorder: how addiction impairs executive control[J]. J Behav Addict, 2020, 9(2): 312-324. DOI: 10.1556/2006.2020.00029.
[30]
BRANG M, YOUNG K S, LAIER C, et al. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific internet-use disorders: an Interaction of person-affect-cognition-execution (I-PACE) model[J]. Neurosci Biobehav Rev, 2016, 71: 252-266. DOI: 10.1016/j.neubiorev.2016.08.033.
[31]
DONG G, POTENZA M N. A cognitive-behavioral model of Internet gaming disorder: theoretical underpinnings and clinical implications[J]. J Psychiatr Res, 2014, 58: 7-11. DOI: 10.1016/j.jpsychires.2014.07.005.
[32]
DING W N, SUN J H, SUN Y W, et al. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study[J]. Behav Brain Funct, 2014, 10(1): 1-9. DOI: 10.1186/1744-9081-10-20.
[33]
TAM E W, WIDJAJA E, BLASER S I, et al. Occipital lobe injury and cortical visual outcomes after neonatal hypoglycemia[J]. Pediatrics, 2008, 122(3): 507-512. DOI: 10.1542/peds.2007-2002.
[34]
KOJIMA H, SUZUKI T. Hemodynamic change in occipital lobe during visual search: visual attention allocation measured with NIRS[J]. Neuropsychologia, 2010, 48(1): 349-352. DOI: 10.1016/j.neuropsychologia.2009.09.028.
[35]
ROBINS D L, HUNYADI E, SCHULTZ R T. Superior temporal activation in response to dynamic audio-visual emotional cues[J]. Brain Cogn, 2009, 69(2): 269-278. DOI: 10.1016/j.bandc.2008.08.007.
[36]
DONG G, HUANG J, DU X. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts[J/OL]. Behav Brain Funct, 2012, 8: 1-8 [2023-10-28]. https://pubmed.ncbi.nlm.nih.gov/22901705/. DOI: 10.1186/1744-9081-8-41.
[37]
PENG D H, JIANG K D, FANG Y R, et al. Decreased regional homogeneity in major depression as revealed by resting-state functional magnetic resonance imaging[J]. Chin Med J (Engl), 2011, 124(3): 369-373. DOI: 10.3760/cma.j.issn.0366-6999.2011.03.009.
[38]
PAAKKI J J, RAHKO J, LONG X, et al. Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders[J]. Brain Res, 2010, 1321: 169-179. DOI: 10.3389/fnins.2021.644543.
[39]
WU T, LONG X, ZANG Y, et al. Regional homogeneity changes in patients with Parkinson's disease[J]. Hum Brain Mapp, 2009, 30(5): 1502-1510. DOI: 10.1002/hbm.20622.
[40]
YUAN Q M, LI H H, DU B Q, et al. The cerebellum and cognition: further evidence for its role in language control[J]. Cereb Cortex, 2022, 33(1): 35-49. DOI: 10.1093/cercor/bhac051.
[41]
MIQUEL M, VAZQUEZ-SANROMAN D, CARBO-GAS M, et al. Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry[J]. Neurosci. Biobehav Rev, 2016, 60: 1-11. DOI: 10.1016/j.neubiorev.2015.11.005.
[42]
BEZDEK M A, GERRIG R J, WENZEL W G, et al. Neural evidence that suspense narrows attentional focus[J]. Neuroscience, 2015, 303: 338-345. DOI: 10.1016/j.neuroscience.2015.06.055.

PREV Altered brain morphometry and structural covariant networks based on cortical thickness in Alzheimer,s disease
NEXT Research on aquaporin magnetic resonance molecular imaging of hippocampal subfields in Alzheimer,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn