Share:
Share this content in WeChat
X
Clinical Article
Research on aquaporin magnetic resonance molecular imaging of hippocampal subfields in Alzheimer's disease
SHI Liwei  CHEN Qiuyan  CHEN Tingting  ZHENG Yushan  WU Yaqi  LI Zhaoyang  WEI Dingtai 

Cite this article as: SHI L W, CHEN Q Y, CHEN T T, et al. Research on aquaporin magnetic resonance molecular imaging of hippocampal subfields in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(8): 65-72, 83. DOI:10.12015/issn.1674-8034.2024.08.010.


[Abstract] Objective This study applied aquaporin magnetic resonance molecular imaging (AQP-MRMI) technology to quantitatively analyze the hippocampal subfield, aiming to explore the application value of AQP-MRMI technology in the diagnosis of Alzheimer's disease (AD).Materials and Methods A total of 59 subjects were included in this study, including 16 subjects in the AD group and 22 subjects in the mild cognitive impairment (MCI) group, and 21 subjects in the normal control (NC) group. Aquaporin apparent diffusion coefficient (AQP-ADC) values were measured and recorded to analyze whether the differences in AQP-ADC values among the three groups were statistically significant, and correlation analysis was conducted with cognitive scores. The receiver operating characteristic (ROC) curve of AQP-ADC values was drawn, and the area under the sensitivity and specificity curve and diagnostic threshold were analyzed.Results There were statistical differences in AQP-ADC values of all hippocampal subfields except the right entorhinal cortex among the three groups (P<0.05). Compared with the NC group, the MCI group only showed increased AQP-ADC value of cornu ammonis-1 (CA1) on the left side (P<0.05), the AD group showed increased AQP-ADC values of bilateral dentate gyrus (DG) -CA4, bilateral CA1-3, bilateral para-hippocampus and left entorhinal cortex (P<0.05); compared with the MCI group, the AQP-ADC values of bilateral DG-CA4, bilateral CA1-3, right subiculum and right para-hippocampus in AD group were increased (P<0.05). The AQP-ADC values of all hippocampal subfields were negatively correlated with the total score of Mini-Mental State Examination (MMSE), except for the right subiculum, and the left DG-CA4 (r=-0.607, P<0.001) and the left CA1-3 (r=-0.633, P<0.001) showed a significant correlation with MMSE. The ROC curve analysis showed that AQP-ADC values of multiple hippocampal subfields region of interest (ROI) could be used to identify NC and AD, MCI, among which the AQP-ADC values of left DG-CA4 and left CA1-3 had the largest area under the curve (AUC=0.905, 0.940) between NC and AD group with high sensitivity and specificity.Conclusions In this study, AQP-ADC values in several hippocampal subfields were correlated with cognitive function, especially the left DG-CA4 and left CA1-3 subregions, which helped evaluate the severity of cognitive impairment and had superior diagnostic efficacy in distinguishing AD from cognitively normal elderly people, and could be used as biomarkers for the detection of AD. The AQP-ADC values of the left CA1 may be expected to be a potential biomarker for early AD. AQP-MRMI, as an emerging aquaporin molecular imaging technology, can reflect the pathophysiological changes of AD, and provide more information for the diagnosis, treatment, and prognosis assessment of AD at the molecular level.
[Keywords] Alzheimer's disease;mild cognitive impairment;aquaporin magnetic resonance molecular imaging;magnetic resonance imaging;hippocampal subfields

SHI Liwei1, 2, 3   CHEN Qiuyan2, 3   CHEN Tingting2   ZHENG Yushan1   WU Yaqi1   LI Zhaoyang1   WEI Dingtai1, 2, 3*  

1 The School of Clinical Medicine, Fujian Medical University, Fuzhou 350000, China

2 Department of Imaging, Ningde Hospital Affiliated to Ningde Normal University, Ningde 352100, China

3 Functional and Molecular Imaging Laboratory for Cerebral Vascular Diseases, Ningde Hospital Affiliated to Ningde Normal University, Ningde 352100, China

Corresponding author: WEI D T, E-mail: wdtai83@163.com

Conflicts of interest   None.

Received  2023-12-30
Accepted  2024-07-15
DOI: 10.12015/issn.1674-8034.2024.08.010
Cite this article as: SHI L W, CHEN Q Y, CHEN T T, et al. Research on aquaporin magnetic resonance molecular imaging of hippocampal subfields in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(8): 65-72, 83. DOI:10.12015/issn.1674-8034.2024.08.010.

[1]
REN R, QI J, LIN S, et al. The China Alzheimer Report 2022[J/OL]. Gen Psychiatr, 2022, 35(1): e100751 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/35372787/. DOI: 10.1136/gpsych-2022-100751.
[2]
JUNGER A, DE SOUSA ROMEIRO A, NOLL M, et al. Impact of type, intensity, frequency, duration and volume of physical activity on dementia and mild cognitive impairment in older adults: protocol for a systematic review and meta-analysis[J/OL]. BMJ Open, 2023, 13(12): e074420 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/38149424/. DOI: 10.1136/bmjopen-2023-074420.
[3]
A Y K, S A J, R M, et al. Alzheimer's disease and its treatment-yesterday, today, and tomorrow[J/OL]. Front Pharmacol, 2024, 15: 1399121 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/38868666/. DOI: 10.3389/fphar.2024.1399121.
[4]
ARNSTEN A F, DATTA D, DEL TREDICI K, et al. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer's disease[J]. Alzheimers Dement, 2021, 17(1): 115-124. DOI: 10.1002/alz.12192.
[5]
FAN L, MAO C, HU X, et al. New insights into the pathogenesis of Alzheimer's disease[J/OL]. Front Neurol, 2020, 10: 1312 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/31998208/. DOI: 10.3389/fneur.2019.01312.
[6]
BARTSCH T, WULFF P. The hippocampus in aging and disease: from plasticity to vulnerability[Z]. Elsevier, 2015:1-16. DOI: 10.1016/j.neuroscience.2015.07.084.
[7]
STRICKLAND J, AUSTEN J, SPRENGEL R, et al. Knockout of NMDARs in CA1 and dentate gyrus fails to impair temporal control of conditioned behavior in mice[J/OL]. Hippocampus, 2023 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/38140716/. DOI: 10.1002/hipo.23593.
[8]
SHAHID S S, WEN Q, RISACHER S L, et al. Hippocampal-subfield microstructures and their relation to plasma biomarkers in Alzheimer's disease[J]. Brain, 2022, 145(6): 2149-2160. DOI: 10.1093/brain/awac138.
[9]
LLORENS-MARTÍN M, BLAZQUEZ-LLORCA L, BENAVIDES- PICCIONE R, et al. Selective alterations of neurons and circuits related to early memory loss in Alzheimer's disease[J/OL]. Front Neuroanat, 2014, 8: 38 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/24904307/. DOI: 10.3389/fnana.2014.00038.
[10]
APOSTOLOVA L G, ZAROW C, BIADO K, et al. Relationship between hippocampal atrophy and neuropathology markers: A 7T MRI validation study of the EADC-ADNI Harmonized Hippocampal Segmentation Protocol[J]. Alzheimers Dement, 2015, 11(2): 139-150. DOI: 10.1016/j.jalz.2015.01.001.
[11]
BRAAK H, BRAAK E. Staging of Alzheimer's disease-related neurofibrillary changes[J]. Neurobiol Aging, 1995, 16(3): 271-278; discussion 8-84. DOI: 10.1016/0197-4580(95)00021-6.
[12]
LIN Y H, SUN X L, CHENG Y, et al. Imaging studies of aquaporin molecules[J]. Radiol Prac, 2015, 30: 622-625. DOI: 10.13609/j.cnki.1000-0313.2015.06.003.
[13]
VALENZA M, FACCHINETTI R, STEARDO L, et al. Altered waste disposal system in aging and Alzheimer's disease: focus on astrocytic aquaporin-4[J/OL]. Front Pharmacol, 2020, 10: 1656 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/32063858/. DOI: 10.3389/fphar.2019.01656.
[14]
MUELLER S, MCFARLAND WHITE K, FASS S, et al. Evaluation of gliovascular functions of AQP4 readthrough isoforms[J/OL]. Front Cell Neurosci, 2023, 17: 1272391 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/38077948/. DOI: 10.3389/fncel.2023.1272391.
[15]
MOHAUPT P, VIALARET J, HIRTZ C, et al. Readthrough isoform of aquaporin-4 (AQP4) as a therapeutic target for Alzheimer's disease and other proteinopathies[J/OL]. Alzheimer's Res Ther, 2023, 15(1): 170 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/37821965/. DOI: 10.1186/s13195-023-01318-2.
[16]
HSU M S, SELDIN M, LEE D J, et al. Laminar-specific and developmental expression of aquaporin-4 in the mouse hippocampus[J]. Neuroscience, 2011, 178: 21-32. DOI: 10.1016/j.neuroscience.2011.01.020.
[17]
ZEPPENFELD D M, SIMON M, HASWELL J D, et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains[J]. JAMA Neurol, 2017, 74(1): 91-99. DOI: 10.1001/jamaneurol.2016.4370.
[18]
ZHANG Z P, XING W, CHENG J, et al. Molecular imaging mechanism and research progress of magnetic resonance aquaporins[J]. Radiol Prac, 2021, 36(8): 1064-1068. DOI: 10.13609/j.cnki.1000-0313.2021.08.022.
[19]
DUVERNOY H M, CATTIN F, RISOLD P Y. The human hippocampus: functional anatomy, vascularization and serial sections with MRI[M]. Springer, 2005.
[20]
INSAUSTI R, AMARAL D G. Hippocampal formation[J]. The human nervous system, 2004, 2: 871-914. DOI: 10.1016/B978-012547626-3/50024-7.
[21]
QIU Y H, CHEN Q Y, SHI L W, et al. Clinical diagnosis value of multi-b value diffusion weighted imaging in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2023, 14(12): 6-14. DOI: 10.12015/issn.1674-8034.2023.12.002.
[22]
LI J H, LI Q J, YU B, et al. Molecular imaging mechanism and methodology of DWI-MRI multi-B value aquaporins[J]. J Chin Clin Med Imaging, 2014, 14(12): 6-14. DOI: 10.12015/issn.1674-8034.2023.12.002.
[23]
CHEN Q Y, WU F L, PENG X L, et al. Correlation study of aquaporin magnetic resonance molecular imaging with aquaporin 4 expression[J]. J Chin Clin Med Imaging, 2016, 27(12): 837-841. DOI: 10.3969/j.issn.1008-1062.2016.12.001.
[24]
SUN C, LIN L, YIN L, et al. Acutely inhibiting AQP4 with TGN-020 improves functional outcome by attenuating edema and peri-infarct astrogliosis after cerebral ischemia[J/OL]. Front Immunol, 2022: 2102 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/35592320/. DOI: 10.3389/fimmu.2022.870029.
[25]
SIMON M, WANG M X, ISMAIL O, et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice[J]. Alzheimer's Res Ther, 2022, 14(1): 1-25. DOI: 10.1186/s13195-022-00999-5.
[26]
DARRICAU M, DOU C, KINET R, et al. Tau seeds from Alzheimer's disease brains trigger tau spread in macaques while oligomeric-Aβ mediates pathology maturation[J]. Alzheimers Dement, 2024, 20(3): 1894-1912. DOI: 10.1002/alz.13604.
[27]
LA JOIE R, PERROTIN A, DE LA SAYETTE V, et al. Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia[J]. Neuroimage Clin, 2013, 3: 155-162. DOI: 10.1016/j.nicl.2013.08.007.
[28]
WEST M J, COLEMAN P D, FLOOD D G, et al. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease[J]. Lancet, 1994, 344(8925): 769-772. DOI: 10.1016/S0140-6736(94)92338-8.
[29]
PADURARIU M, CIOBICA A, MAVROUDIS I, et al. Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer's disease patients[J/OL]. Psychiat Danub, 2012, 24(2): 152-158 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/22706413/.
[30]
KNIERIM J J. The hippocampus[J/OL]. Curr Biol, 2015, 25(23): R1116-R1121 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/26654366/.
[31]
FENG L S, ZHANG X N, GUANG X Z, et al. Diffusion-weighted imaging study of white matter structure in elderly patients with Alzheimer's disease[J]. Tianjin Pharmaceutical, 2010, 38(3): 173-175. DOI: 10.3969/j.issn.0253-9896.2010.03.005.
[32]
ABREU D, GOMES J, RIBEIRO F, et al. Astrocytes control hippocampal synaptic plasticity through the vesicular-dependent release of D-serine[J/OL]. Front Cell Neurosci, 2023, 17: 1282841 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/38145284/. DOI: 10.3389/fncel.2023.1282841.
[33]
YANG J, LI M-X, LUO Y, et al. Chronic ceftriaxone treatment rescues hippocampal memory deficit in AQP4 knockout mice via activation of GLT-1[J]. Neuropharmacology, 2013, 75: 213-222. DOI: 10.1016/j.neuropharm.2013.08.009
[34]
PAPADOPOULOS M C, VERKMAN A S. Aquaporin water channels in the nervous system[J]. Nat Rev Neurosci, 2013, 14(4): 265-277. DOI: 10.1038/nrn3468.
[35]
JIANG Y, LI T, LIU Y, et al. Contribution of inwardly rectifying K channel 4.1 of supraoptic astrocytes to the regulation of vasopressin neuronal activity by hypotonicity[J]. Glia, 2023, 71(3): 704-719. DOI: 10.1002/glia.24306.
[36]
SZU J I, BINDER D K. The role of astrocytic aquaporin-4 in synaptic plasticity and learning and memory[J/OL]. Front Integr Neurosci, 2016, 10: 8 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/26941623/. DOI: 10.3389/fnint.2016.00008.
[37]
YEE E, POPURI K, BEG M F, et al. Quantifying brain metabolism from FDG‐PET images into a probability of Alzheimer's dementia score[J]. Hum Brain Mapp, 2020, 41(1): 5-16. DOI: 10.1002/hbm.24783.
[38]
BOUTS M J, MöLLER C, HAFKEMEIJER A, et al. Single subject classification of Alzheimer's disease and behavioral variant frontotemporal dementia using anatomical, diffusion tensor, and resting-state functional magnetic resonance imaging[J]. J Alzheimers Dis, 2018, 62(4): 1827-1839. DOI: 10.3233/JAD-170893.
[39]
XUE Y, ZHANG Z, WEN C, et al. Characterization of Alzheimer's disease using ultra-high b-values apparent diffusion coefficient and diffusion kurtosis imaging[J/OL]. Aging Dis, 2019, 10(5): 1026 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/31595200/. DOI: 10.14336/AD.2018.1129.

PREV A resting-state functional magnetic resonance imaging study of abnormal brain function in patients with Internet gaming disorder
NEXT Study on cerebral perfusion characteristic network of type 2 diabetes mellitus patients based on MR arterial spin labeling imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn