Share:
Share this content in WeChat
X
Clinical Article
Evaluation of rest-state fMRI in patients with lumbar disc herniation based on ALFF
XUE Qin  TU Jianchun  DAI Dechun  LÜ Ying  XU Ting 

Cite this article as: XUE Q, TU J C, DAI D C, et al. Evaluation of rest-state fMRI in patients with lumbar disc herniation based on ALFF[J]. Chin J Magn Reson Imaging, 2024, 15(8): 78-83. DOI:10.12015/issn.1674-8034.2024.08.012.


[Abstract] Objective To analyze the changes in resting-state functional magnetic resonance imaging (rs-fMRI) in patients with lumbar disc herniation (LDH) and explore potential neuroimaging mechanisms.Materials and Methods A total of 24 LDH patients were prospectively included, along with 30 chronic nonspecific low back pain patients (CNLBP) and 27 healthy controls (HC) as the control group. First, the LDH group and CNLBP group underwent Visual Analog Scale (VAS), Oswestry Disability Index (ODI), and Japanese Orthopedic Association (JOA) assessments. Then, all three groups underwent rs-fMRI scanning, and the differences in amplitude of low-frequency fluctuation (ALFF) values among the three groups were compared. Finally, the ALFF values of the brain regions differed between the LDH group and CNLBP group were extracted and correlated with the clinical scales.Results The clinical scale evaluation results showed that there was no difference in VAS scores between the LDH group and CNLBP group, but there were differences in ODI and JOA scores, indicating that LDH patients had more severe lumbar dysfunction. The brain regions with altered ALFF values among the three groups were bilateral calcarine/cuneus cortex, left thalamus (GRF correction, P<0.005 at voxel level, P<0.01 at cluster level). Compared with the HC group, the LDH group had decreased ALFF values in the bilateral calcarine/cuneus cortex, and increased ALFF values in the left thalamus; the CNLBP group had decreased ALFF values in the bilateral calcarine/cuneus cortex but no increased ALFF values. Compared with the CNLBP group, the LDH group had increased ALFF values in the left thalamus but no decreased ALFF values. No correlation was found between the ALFF values of the brain regions differed between the LDH group and CNLBP group and the clinical scales.Conclusions Patients with LDH have both shared and unique pain central regulatory mechanisms with CNLBP patients.The change of left thalamic functional activity may be an important characteristic of the LDH central mechanism.
[Keywords] lumbar disc herniation;chronic nonspecific low back pain;resting-state functional magnetic resonance imaging;magnetic resonance imaging;amplitude of low-frequency fluctuation

XUE Qin1   TU Jianchun1   DAI Dechun2   LÜ Ying2   XU Ting1*  

1 Department of Radiology, Kunshan Traditional Chinese Medicine Hospital, Suzhou 215300, China

2 Department of Acupuncture Massage and Rehabilitation, Kunshan Hospital of Traditional Chinese Medicine, Suzhou 215300, China

Corresponding author: XU T, E-mail: xut0618@163.com

Conflicts of interest   None.

Received  2024-02-28
Accepted  2024-08-02
DOI: 10.12015/issn.1674-8034.2024.08.012
Cite this article as: XUE Q, TU J C, DAI D C, et al. Evaluation of rest-state fMRI in patients with lumbar disc herniation based on ALFF[J]. Chin J Magn Reson Imaging, 2024, 15(8): 78-83. DOI:10.12015/issn.1674-8034.2024.08.012.

[1]
HARTVIGSEN J, HANCOCK M J, KONGSTED A, et al. What low back pain is and why we need to pay attention[J]. Lancet, 2018, 391(10137): 2356-2367. DOI: 10.1016/S0140-6736(18)30480-X.
[2]
CHIAROTTO A, KOES B W. Nonspecific low back pain[J]. N Engl J Med, 2022, 386(18): 1732-1740. DOI: 10.1056/NEJMcp2032396.
[3]
GBD 2021 Low Back Pain Collaborators. Global, regional, and national burden of low back pain, 1990-2020, its attributable risk factors, and toprojections 2050: a systematic analysis of the Global Burden of Disease Study 2021[J/OL]. Lancet Rheumatol, 2023, 5(6): e316-e329 [2024-02-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234592. DOI: 10.1016/S2665-9913(23)00098-X.
[4]
Chinese Orthopaedic Association of Spinal Surgery Group, Chinese Orthopaedic Association of Orthopaedic Rehabilitation Group. Clinical practice guideline for diagnosis and treatment of umbar disc herniation[J]. Chin J Orthop, 2020, 40(8): 477-487. DOI: 10.3760/cma.j.cn121113-20200402-00213.
[5]
Chinese Medical Association Pain Society S P S G. Consensus of Chinese Pain Experts on the Diagnosis and Treatment of Lumbar Disc Herniation[J]. Chin J Pain Med, 2020, 26(1): 2-6. DOI: 10.3969/j.issn.1004-406X.2022.03.09.
[6]
DEYO R A, MIRZA S K. CLINICAL PRACTICE. Herniated Lumbar Intervertebral Disk[J]. N Engl J Med, 2016, 374 (18): 1763-1772. DOI: 10.1056/NEJMcp1512658.
[7]
ZHANG T L, ZHAO J R, CHEN Q Q, et al. Progress in RS-fMRI functional connection analysis-based research on brain mechanism of chronic low back and leg pain caused by lumbar disc herniation[J]. Chin J Med Phys, 2019, 36(12): 1421-1426. DOI: 10.3969/j.issn.1005-202X.2019.12.011.
[8]
OHTORI S, ORITA S, YAMAUCHI K, et al. Do physical symptoms predict the outcome of surgical fusion in patients with discogenic low back pain?[J]. Asian Spine J, 2016, 10(3): 509-515. DOI: 10.4184/asj.2016.10.3.509.
[9]
NG S K, URQUHART D M, FITZGERALD P B, et al. The relationship between structural and functional brain changes and altered emotion and cognition in chronic low back pain brain changes: A systematic review of MRI and fMRI studies[J]. Clin J Pain, 2018, 34(3): 237-261. DOI: 10.1097/AJP.0000000000000534.
[10]
ZHOU F, GU L, HONG S, et al. Altered low-frequency oscillation amplitude of resting state-fMRI in patients with discogenic low-back and leg pain[J]. J Pain Res, 2018, 11: 165-176. DOI: 10.2147/JPR.S151562.
[11]
WEN Y, CHEN X M, JIN X, et al. A spinal manipulative therapy altered brain activity in patients with lumbar disc herniation: A resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2022, 16: 974792 [2024-02-28]. https://pubmed.ncbi.nlm.nih.gov/36161170/. DOI: 10.3389/fnins.2022.974792.
[12]
ZHOU X C, HUANG Y B, WU S, et al. Lever positioning manipulation alters real-time brain activity in patients with lumbar disc herniation: An amplitude of low-frequency fluctuation and regional homogeneity study[J/OL]. Psychiatry Res Neuroimaging, 2023, 334: 111674 [2024-02-28]. https://pubmed.ncbi.nlm.nih.gov/37413860/. DOI: 10.1016/j.pscychresns.2023.111674.
[13]
HARRISSON S A, STYNES S, DUNN K M, et al. Neuropathic pain in low back-related leg pain patients: What is the evidence of prevalence, characteristics, and prognosis in primary care? A systematic review of the literature[J]. J Pain, 2017, 18(11): 1295-1312. DOI: 10.1016/j.jpain.2017.04.012.
[14]
CHEN X, LU B, YAN C G. Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes[J]. Hum Brain Mapp, 2018, 39(1): 300-318. DOI: 10.1002/hbm.23843.
[15]
Chinese Association of Rehabilitation Medicine Spinal Cord Professional Committee, Orthopedic Rehabilitation Group of The Orthopedics Branch of The Chinese Medical Association. Clinical guidelines for nonspecific low back pain in China[J]. Chin J Spine Spinal Cord, 2022, 32(3): 258-268. DOI: 10.3969/j.issn.1004-406X.2022.03.09.
[16]
BEZDEK M A, GERRIG R J, WENZEL W G, et al. Neural evidence that suspense narrows attentional focus[J]. Neuroscience, 2015, 303: 338-345. DOI: 10.1016/j.neuroscience.2015.06.055.
[17]
JIA J, WANG J, SUN Y, et al. A review of studies on two parallel visual streams in cortex: The dorsal and ventral visual pathways[J]. Chin J Optom Ophthalmol Vis Sci, 2022, 24(4): 316-320. DOI: 10.3760/cma.j.cn115909-20201101-00419.
[18]
ZERAATI R, SHI Y L, STEINMETZ N A, et al. Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity[J/OL]. Nat Commun, 2023, 14(1): 1858 [2024-02-28]. https://pubmed.ncbi.nlm.nih.gov/37012299/. DOI: 10.1038/s41467-023-37613-7.
[19]
GONZÁLEZ-ROLDÁN A M, BUSTAN S, KAMPING S, et al. Pain and related suffering reduce attention toward others[J]. Pain Pract, 2023, 23(8): 873-885. DOI: 10.1111/papr.13260.
[20]
ZHANG Y, YE Q, HE H, et al. Neurocognitive mechanisms underlying attention bias towards pain: Evidence from a drift-diffusion model and event-related potentials[J]. J Pain, 2023, 24(7): 1307-1320. DOI: 10.1016/j.jpain.2023.03.003.
[21]
UNG H, BROWN J E, JOHNSON K A, et al. Multivariate classification of structural MRI data detects chronic low back pain[J]. Cereb Cortex, 2014, 24(4): 1037-1044. DOI: 10.1093/cercor/bhs378.
[22]
SHEN W, TU Y, GOLLUB R L, et al. Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study[J/OL]. Neuroimage Clin, 2019, 22: 101775 [2024-02-28]. https://pubmed.ncbi.nlm.nih.gov/30927604/. DOI: 10.1016/j.nicl.2019.101775.
[23]
YOU H J, LEI J, PERTOVAARA A. Thalamus: The 'promoter' of endogenous modulation of pain and potential therapeutic target in pathological pain[J/OL]. Neurosci Biobehav Rev, 2022, 139: 104745 [2024-02-28]. https://pubmed.ncbi.nlm.nih.gov/35716873/. DOI: 10.1016/j.neubiorev.2022.104745.
[24]
KNEZEVIC N N, CANDIDO K D, VLAEYEN J W S, et al. Low back pain[J]. Lancet, 2021, 398(10294): 78-92. DOI: 10.1016/S0140-6736(21)00733-9.
[25]
FINNERUP N B, KUNER R, JENSEN T S. Neuropathic pain: From mechanisms to treatment[J]. Physiol Rev, 2021, 101(1): 259-301. DOI: 10.1152/physrev.00045.2019.
[26]
SHAMJI M F, DE VOS C, SHARAN A. The advancing role of neuromodulation for the management of chronic treatment-refractory pain[J]. Neurosurgery, 2017, 80(3S): S108-S113. DOI: 10.1093/neuros/nyw047.
[27]
ZHU J, SHI L, SU Y. A rs-fMRI study of functional connectivity changes between thalamus and postcentral gyrus in patients with neuropathic pain after brachial plexus avulsion[J/OL]. Clin Neurol Neurosurg, 2023, 235: 108021 [2024-02-28]. https://pubmed.ncbi.nlm.nih.gov/37898030/. DOI: 10.1016/j.clineuro.2023.108021.
[28]
KUNER R, KUNER T. Cellular circuits in the brain and their modulation in acute and chronic pain[J]. Physiol Rev, 2021, 101(1): 213-258. DOI: 10.1152/physrev.00040.2019.
[29]
VANNESTE S, SONG J J, DE RIDDER D. Thalamocortical dysrhythmia detected by machine learning[J/OL]. Nat Commun, 2018, 9(1): 1103 [2024-02-28]. https://pubmed.ncbi.nlm.nih.gov/29549239/. DOI: 10.1038/s41467-018-02820-0.
[30]
ALSHELH Z, DI PIETRO F, YOUSSEF A M, et al. Chronic neuropathic pain: It's about the rhythm[J]. J Neurosci, 2016, 36(3): 1008-1018. DOI: 10.1523/JNEUROSCI.2768-15.2016.
[31]
JONES E G. Thalamocortical dysrhythmia and chronic pain[J]. Pain, 2010, 150(1): 4-5. DOI: 10.1016/j.pain.2010.03.022.
[32]
LI H, SONG Q, ZHANG R, et al. Enhanced temporal coupling between thalamus and dorsolateral prefrontal cortex mediates chronic low back pain and depression[J/OL]. Neural Plast, 2021, 2021: 7498714 [2024-02-28]. https://pubmed.ncbi.nlm.nih.gov/34659398/. DOI: 10.1155/2021/7498714.
[33]
WANG Z, HUANG S, YU X, et al. Altered thalamic neurotransmitters metabolism and functional connectivity during the development of chronic constriction injury induced neuropathic pain[J/OL]. Biol Res, 2020, 53(1): 36 [2024-02-28]. https://pubmed.ncbi.nlm.nih.gov/32843088/. DOI: 10.1186/s40659-020-00303-5.
[34]
ROLLS E T, HUANG C C, LIN C P, et al. Automated anatomical labelling atlas 3[J/OL]. Neuroimage, 2020, 206: 116189 [2024-02-28]. https://pubmed.ncbi.nlm.nih.gov/31521825/. DOI: 10.1016/j.neuroimage.2019.116189.
[35]
MA Q. A functional subdivision within the somatosensory system and its implications for pain research[J]. Neuron, 2022, 110(5): 749-769. DOI: 10.1016/j.neuron.2021.12.015.

PREV Study on cerebral perfusion characteristic network of type 2 diabetes mellitus patients based on MR arterial spin labeling imaging
NEXT Preliminary study of MK parametric map based on DKI technique in evaluating brain microstructural damage and cognitive impairment in patients with moderate and severe OSA
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn