Share:
Share this content in WeChat
X
Clinical Article
Clinical study of hypertension-related brain volume and white matter hyperintensity changes based on multimodal MRI
QIN Yinyin  XU Jianming  ZHU Jianbing  YANG Jiao  WANG Xiaoyan  PENG Bo  MA Xinwei 

Cite this article as: QIN Y Y, XU J M, ZHU J B, et al. Clinical study of hypertension-related brain volume and white matter hyperintensity changes based on multimodal MRI[J]. Chin J Magn Reson Imaging, 2024, 15(8): 90-96. DOI:10.12015/issn.1674-8034.2024.08.014.


[Abstract] Objective The volume and white matter hyperintensities (WMH) in the brain were studied,based on voxel-based morphometry (VBM) and semi-quantitative assessment of WMH in hypertensive patients.Materials and Methods This retrospective study included confirmed hypertensive cases and healthy control cases from Suzhou Science and Technology City Hospital Affiliated to Nanjing University from January 2018 to November 2022. All enrolled cases underwent thin layers T1WI sequence examination. Firstly, images were imported into the brain structure EKM-KELM+ classification algorithm model to calculate gray matter volume (GMV), white matter volume (WMV) and total intracranial volume (TIV). The gray and white matter volume of each brain region was expressed as the ratio of GMV/TIV and WMV/TIV, respectively, to analyze the variation characteristics of brain gray matter volume in hypertensive patients of different ages. At the same time, Scheltens Visual Quantitative Assessment of WMH was performed on fluid attenuated inversion recovery (FLAIR) images.Results (1) A total of 509 cases were included in this study, including 91 cases in the normal blood pressure group and 418 cases in the hypertension group. Among them, 136 cases were young (20-40 years old), 218 cases were middle-aged (41-60 years old) and 155 cases were elderly (61-80 years old). There were no significant differences in gender and age within groups (all P>0.05). (2) There were significant differences among hypertension grades in GMV/TIV of the left olfactory cortex (P=0.031), left straight gyrus (P=0.036), right straight gyrus (P=0.022), and right inferior occipital gyrus (P=0.011) in young patients. (3) The comparison of GMV/TIV in the middle-aged group showed that there was significant difference in the volume of the left supplementary motor area among different hypertension levels (P=0.036), while there was no significant difference in WMV/TIV. (4) GMV/TIV comparison showed that there was significant difference in right olfactoid cortex volume among different hypertension grades (P=0.047), while there was no significant difference in WMV/TIV. (5) Scheltens visual score showed that there was no significant difference in the young group (P>0.05). In the middle age group, there were statistically significant differences in the high signal of voidural quality (frontal angle, occipital angle and lateral ventricle) (P=0.028, 0.032, 0.020), and statistically significant differences in deep white matter (frontal lobe) (P=0.024). There was significant difference in the frontal Angle, frontal lobe and pallidum WMH in the old group (P=0.022, 0.024, 0.015).Conclusions Multi modal semi-quantitative analysis of MRI can effectively evaluate changes in BVM and WMH in hypertensive patients.With the increase of blood pressure level, the gray matter volume of the young group changed more than that of the middle and old group. WMH was more likely to appear in the middle-aged group than in the young group.
[Keywords] hypertension;magnetic resonance imaging;voxel-based morphometry;white matter hyperintensity;brain volume;multimodal

QIN Yinyin1   XU Jianming2   ZHU Jianbing2   YANG Jiao1   WANG Xiaoyan2   PENG Bo3   MA Xinwei2*  

1 Institute of Clinical Medicine, the Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215002, China

2 Department of Imaging, the Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215002, China

3 Imaging Center, Suzhou Institute of Biomedical Engineering Technology, Chinese Academy of Sciences, Suzhou 215163, China

Corresponding author: MA X W, E-mail: 2013mxw@sina.cn

Conflicts of interest   None.

Received  2024-02-08
Accepted  2024-08-09
DOI: 10.12015/issn.1674-8034.2024.08.014
Cite this article as: QIN Y Y, XU J M, ZHU J B, et al. Clinical study of hypertension-related brain volume and white matter hyperintensity changes based on multimodal MRI[J]. Chin J Magn Reson Imaging, 2024, 15(8): 90-96. DOI:10.12015/issn.1674-8034.2024.08.014.

[1]
ALENZUELA P L V, CARRERA-BASTOS P, GALVEZ B G, et al. Lifestyle interventions for the prevention and treatment of hypertension[J]. Nat Rev Cardiol, 2021, 18(4): 251-75. DOI: 10.1038/s41569-020-00437-9.
[2]
ZHANG F, BRYANT K B, MORAN A E, et al. Effectiveness of hypertension management strategies in SPRINT-Eligible US adults: A simulation study[J/OL]. J Am Heart Assoc, 2024, 13(2): e032370 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/38214272/. DOI: 10.1161/JAHA.123.032370.
[3]
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants[J]. Lancet, 2021, 398(10304): 957-980. DOI: 10.1016/S0140-6736(21)01330-1.
[4]
VIRANI S S, ALONSO A, BENJAMIN E J, et al. Heart disease and stroke statistics-2020 update: A report from the american heart association[J/OL]. Circulation, 2020, 141(9): e139-e596 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/31992061/. DOI: 10.1161/CIR.0000000000000757.
[5]
LUO D, CHENG Y , ZHANG H, et al. Association between high blood pressure and long term cardiovascular events in young adults: systematic review and meta-analysis[J/OL]. BMJ, 2020, 370: m3222 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/32907799/. DOI: 10.1136/bmj.m3222.
[6]
MILLS K T, STEFABESCU A, HE J, et al. The global epidemiology of hypertension[J]. Nat Rev Nephrol, 2020, 16: 223-237. DOI: 10.1038/s41581-019-0244-2.
[7]
MAHINRD S, KURIAN S, GARNER C R, et al. Cumulative blood pressure exposure during young adulthood and mobility and cognitive function in midlife[J]. Circulation, 2020, 141(9): 712-724. DOI: 10.1161/CIRCULATIONAHA.119.042502.
[8]
WILLIAMS B, MANCIA G, SPIERING W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension[J]. Eur Heart J, 2018, 39(33): 3021-3104. DOI: 10.1093/eurheartj/ehy339.
[9]
LIU L S, WU Z S, WANG W, et al. 2018 Chinese guidelines for the management of hypertension[J]. Chin J Cardiovase Med, 2019, 24(1): 24-56. DOI: 10.3969/j.issn.1007-5410.2019.01.002.
[10]
CLANCY U, GILMARTIN D, JOCHEMS A C C, et al. Neuropsychiatric symptoms associated with cerebral small vessel disease: a systematic review and meta-analysis[J]. Lancet Psychiatry, 2021, 8(3): 225-236. DOI: 10.1016/S2215-0366(20)30431-4.
[11]
WARDLAW J M, WOODHOUSE L J, MHLANGA I I, et al. Isosorbide mononitrate and cilostazol treatment in patients with symptomatic cerebral small vessel disease: The lacunar intervention trial-2 (LACI-2) randomized clinical trial[J]. JAMA Neurol, 2023, 80(7): 682-692. DOI: 10.1001/jamaneurol.2023.1526.
[12]
CANNISTRARO R J, BADI M, EIDELMAN B H, et al. CNS small vessel disease: A clinical review[J]. Neurology, 2019, 92(24): 1146-1156. DOI: 10.1212/WNL.0000000000007654.
[13]
SPORNS O, TONONI G, KÖTTER R. The human connectome: A structural description of the human brain[J/OL]. PLoS Comput Biol, 2005, 1(4): e42 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/16201007/. DOI: 10.1371/journal.pcbi.0010042.
[14]
WANG T, JIN A, FU Y, et al. Heterogeneity of white matter hyperintensities in cognitively impaired patients with cerebral small vessel disease[J/OL]. Front Immunol, 2021, 12: 803504 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/34956241/. DOI: 10.3389/fimmu.2021.803504.
[15]
SUN W, HUANG L, CHENG Y, et al. Medial temporal atrophy contributes to cognitive impairment in cerebral small vessel disease[J/OL]. Front Neurol, 2022, 13: 858171 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/35665031/. DOI: 10.3389/fneur.2022.858171.
[16]
PEREIRA D N, BICALHO M A C, JORGE A O, et al. Neurological manifestations by sex and age group in COVID-19 inhospital patients[J/OL]. eNeurologicalSci, 2022, 28: 100419 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/35935176/. DOI: 10.1016/j.ensci.2022.100419.
[17]
YU X, PENG B, XUE Z, et al. Analyzing brain structural differences associated with categories of blood pressure in adults using empirical kernel mapping-based kernel ELM[J/OL]. Biomed Eng Online, 2019, 18(1): 124 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/31881897/. DOI: 10.1186/s12938-019-0740-4.
[18]
HAIGHT T, NICK BRYAN R, ERUS G, et al. White matter microstructure, white matter lesions, and hypertension: An examination of early surrogate markers of vascular-related brain change in midlife[J]. Neuroimage Clin, 2018, 18: 753-761. DOI: 10.1016/j.nicl.2018.02.032.
[19]
YANG Y, ZHANG Q, REN J, et al. Evolution of brain morphology in spontaneously hypertensive and Wistar-Kyoto rats from early adulthood to aging: A longitudinal magnetic resonance imaging study[J/OL]. Front Aging Neurosci, 2021, 13: 757808 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/34916922/. DOI: 10.3389/fnagi.2021.757808.
[20]
FARRER T J, BIGLER E D, TSUI-CALDWELL Y H W, et al. Scheltens ratings, clinical white matter hyperintensities and executive: Functioning in the Cache County Memory Study[J]. Appl Neuropsychol Adult, 2023, 5: 1-7. DOI: 10.1080/23279095.2023.2287140.
[21]
BRETZNER M, BONKHOFF A K, SCHIRMER M D, et al. Radiomics-derived brain age predicts functional outcome after acute ischemic stroke[J/OL]. Neurology, 2023, 100(8): e822-e833 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/36443016/. DOI: 10.1212/WNL.0000000000201596.
[22]
BIESSELS G J, REIJMER Y D. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI?[J]. Diabetes, 2014, 63(7): 2244-2252. DOI: 10.2337/db14-0348.
[23]
WANG Z M, SHAN Y, ZHANG M, et al. Projections of Brodmann Area 6 to the pyramidal tract in humans: Quantifications using high angular resolution data[J/OL]. Front Neural Circuits, 2019, 13: 62 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/31616257/. DOI: 10.3389/fncir.2019.00062.
[24]
BRUNJES P C. Pyramidal cells in olfactory cortex[J/OL]. Chem Senses, 2021, 46: bjab002 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/33433589/. DOI: 10.1093/chemse/bjab002.
[25]
WANG R W Y , CHANG W L, CHUANG S W, et al. Posterior cingulate cortex can be a regulatory modulator of the default mode network in task-negative state[J/OL]. Sci Rep, 2019, 9(1): 7565 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/31110251/. DOI: 10.1038/s41598-019-43885-1.
[26]
BUBB E J, METZLER-BADDELEY C, AGGLETON J P. The cingulum bundle: Anatomy, function, and dysfunction[J]. Neurosci Biobehav Rev, 2018, 92: 104-127. DOI: 10.1016/j.neubiorev.2018.05.008.
[27]
LACUEY N, HAMPSON J P, THEERANARW W, et al. Cortical structures associated with human blood pressure control[J]. JAMA Neurol, 2018, 75(2): 194-202. DOI: 10.1001/jamaneurol.2017.3344.
[28]
KAMALI A, MILOSAVLJEVIC S, GANDHI A, et al. The cortico-limbo-thalamo-cortical circuits: An update to the original Papez circuit of the human limbic system[J]. Brain Topogr, 2023, 36(3): 371-389. DOI: 10.1007/s10548-023-00955-y.
[29]
SIGURDSSON H P, ALCOCK L, FIRBANK M, et al. Developing a novel dual-injection FDG-PET imaging methodology to study the functional neuroanatomy of gait[J/OL]. Neuroimage, 2024, 288: 120531 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/38331333/. DOI: 10.1016/j.neuroimage.2024.120531.
[30]
INSAUSTI R, MUÑOZ-LÓPEZ M, INSAUSTI A M. The CA2 hippocampal subfield in humans: A review[J]. Hippocampus, 2023, 33(6): 712-729. DOI: 10.1002/hipo.23547.
[31]
ROBINSON-PAPP J, NAVIS A, DHAMOON M S, et al. The use of visual rating scales to quantify brain MRI lesions in patients with HIV infection[J]. J Neuroimaging, 2018, 28(2): 217-224. DOI: 10.1111/jon.12466.
[32]
SUVILA K, MCCABE E L, LEHTONEN A, et al. Early onset hypertension is associated with hypertensive end-organ damage already by midlife[J/OL]. Hypertension, 2019: HYPERTENSIONAHA11913069 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/31256722/. DOI: 10.1161/HYPERTENSIONAHA.119.13069.
[33]
MCEVOY L K, FENNEMA-NOTESTINE C, EYLER L T, et al. Hypertension-related alterations in white matter microstructure detectable in middle age[J]. Hypertension, 2015, 66(2): 317-323. DOI: 10.1161/HYPERTENSIONAHA.115.05336.
[34]
HUGHES D, UDGE C, MURPHY R, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis[J/OL]. JAMA, 2020, 323(19): 1934 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/32427305/. DOI: 10.1001/jama.2020.4249.
[35]
CANAVAN M, O'DONNELL M J. Hypertension and cognitive impairment: a review of mechanisms and key concepts[J/OL]. Front Neurol, 2022, 13: 821135 [2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/35185772/. DOI: 10.3389/fneur.2022.821135.
[36]
MB J, GIRARD R, POLSTER S, et al. Cerebral hemorrhage: pathophysiology, treatment, and future directions[J]. Circ Res, 2022, 130(8): 1204-1229. DOI: 10.1161/CIRCRESAHA.121.319949.
[37]
YANG J H, YANG Z X, CHEN C J, et al. Study of brain magnetic resonance imaging in patients with hypertension and type 2 diabetes mellitus based on DKI technology[J]. Chin J Magn Reson Imaging, 2021, 12(7): 1-5, 17. DOI: 10.12015/issn.1674-8034.2021.07.001.
[38]
FRIEDMAN N P, ROBBINS T W. The role of prefrontal cortex in cognitive control and executive function[J]. Neuropsychopharmacology, 2022, 47(1): 72-89. DOI: 10.1038/s41386-021-01132-0.
[39]
JIA P , LEE H W Y , CHAN J Y C, et al. Long-term blood pressure variability increases risks of dementia and cognitive decline: a meta-analysis of longitudinal studies[J]. Hypertension. 2021, 78(4): 996-1004. DOI: 10.1161/HYPERTENSIONAHA.121.17788.
[40]
CHEN W, DENG S, JIANG H, et al. Alterations of white matter connectivity in adults with essential hypertension[J]. Int J Gen Med, 2024, 17: 335-346. DOI: 10.2147/IJGM.S444384.
[41]
KENNEDY K G, GRIGORIAN A, MITCHELL R H B, et al. Association of blood pressure with brain structure in youth with and without bipolar disorder[J]. J Affect Disord, 2022, 299: 666-674. DOI: 10.1016/j.jad.2021.12.028.
[42]
MA X W, XU J M, ZHU J B, et al. Semiquantitative assessment of white matter lesions in elderly hypertensive patients based on magnetic resonace sequences[J]. Chin J Geriatr Heart Brain Vessel Dis, 2019, 21(12): 1305-1308. DOI: 10.3969/j.issn.1009-0126.2019.12.019.

PREV Preliminary study of MK parametric map based on DKI technique in evaluating brain microstructural damage and cognitive impairment in patients with moderate and severe OSA
NEXT Exploring the cut-off age value of marrow transformation in children,s clivus by MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn