Share:
Share this content in WeChat
X
Clinical Article
Differentiation of high-grade glioma and metastatic tumor based on MRI radiomics and semantic features
XU Zichao  ZHANG Ya  LIU Qing  SHI Zhaoxia  WANG Jing  WEI Hongyang  PENG Xingzhen  ZONG Huiqian 

Cite this article as: XU Z C, ZHANG Y, LIU Q, et al. Differentiation of high-grade glioma and metastatic tumor based on MRI radiomics and semantic features[J]. Chin J Magn Reson Imaging, 2024, 15(8): 103-109, 123. DOI:10.12015/issn.1674-8034.2024.08.016.


[Abstract] Objective To combine traditional MRI sequences and enhancement scans, extract multimodal high-throughput radiomics features along with semantic features, and use different learning classifiers to construct various models and draw Normogragh for the differentiation of high-grade glioma (HGG) and solitary brain metastasis (SBM).Materials and Methods This study retrospectively analyzed multiparametric MRI images of 101 patients. Tumor region of interest (ROI) were delineated by two experienced physicians, and 107 sets of radiomic features for each sequence were extracted using the Pyradiomics software package. To eliminate variability in manual delineation, an intraclass correlation coefficient (ICC) consistency test was carried out. The features with the highest relevance were selected using the maximum relevance minimum redundancy algorithm, and then redundant features were further eliminated using the least absolute shrinkage and selection operator method. Classification models were established using four algorithms: support vector machine, logistic regression, random forest, and K-nearest neighbors. Combining seven semantic features evaluated by radiologists, chi-square test and multivariate analysis were used to remove semantically irrelevant features. Then, a comprehensive model incorporating both radiomics and semantic features was formed and illustrated using nomogram. Finally, the diagnostic capability of each model was evaluated to determine the optimal classifier.Results Among the radiomics models for HGG and SBM patients, the model with the highest area under the curve (AUC) value was logistic regression, with AUC values of 0.90 for both the training set and test set. In models constructed using semantic features, the random forest model exhibited the best performance, with AUC values of 0.82 and 0.87 for the training and test sets, respectively. After combining semantic features with radiomics scores, the model constructed using logistic regression demonstrated optimal performance, with AUC values of 0.91 and 0.92 for the training and test sets, respectively.Conclusions The non-invasive approach proposed in this study that utilizes radiomics machine learning classifiers and combines image semantic features to draw nomogram for differentiating between HGG and SBM, demonstrates good accuracy and provides significant assistance for clinical decision-making and practice.
[Keywords] high-grade glioma;solitary brain metastasis;magnetic resonance imaging;radiomics;machine learning;semantic features;nomogram

XU Zichao1   ZHANG Ya2   LIU Qing2   SHI Zhaoxia2   WANG Jing2   WEI Hongyang2   PENG Xingzhen2   ZONG Huiqian2*  

1 Department of Medical Imaging, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China

2 Department of Medical Equipment, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China

Corresponding author: ZONG H Q, E-mail: zonghuiqian@sina.com

Conflicts of interest   None.

Received  2024-03-01
Accepted  2024-08-02
DOI: 10.12015/issn.1674-8034.2024.08.016
Cite this article as: XU Z C, ZHANG Y, LIU Q, et al. Differentiation of high-grade glioma and metastatic tumor based on MRI radiomics and semantic features[J]. Chin J Magn Reson Imaging, 2024, 15(8): 103-109, 123. DOI:10.12015/issn.1674-8034.2024.08.016.

[1]
LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
[4]
HANIF F, MUZAFFAR K, PERVEEN K, et al. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment[J]. Asian Pac J Cancer Prev, 2017, 18(1): 3-9. DOI: 10.22034/APJCP.2017.18.1.3.
[5]
GRITSCH S, BATCHELOR T T, GONZALEZ CASTRO L N. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system[J]. Cancer, 2022, 128(1): 47-58. DOI: 10.1002/cncr.33918.
[6]
SOFFIETTI R, ABACIOGLU U, BAUMERT B, et al. Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO)[J]. Neuro Oncol, 2017, 19(2): 162-174. DOI: 10.1093/neuonc/now241.
[7]
LIU W W, POWELL C A, WANG Q. Tumor microenvironment in lung cancer-derived brain metastasis[J]. Chin Med J (Engl), 2022, 135(15): 1781-1791. DOI: 10.1097/CM9.0000000000002127.
[8]
BANDER E D, JONES S H, PISAPIA D, et al. Tubular brain tumor biopsy improves diagnostic yield for subcortical lesions[J]. J Neurooncol, 2019, 141(1): 121-129. DOI: 10.1007/s11060-018-03014-w.
[9]
CHEN M, COPLEY S J, VIOLA P, et al. Radiomics and artificial intelligence for precision medicine in lung cancer treatment[J]. Semin Cancer Biol, 2023, 93: 97-113. DOI: 10.1016/j.semcancer.2023.05.004.
[10]
KIM S Y, CHO N, CHOI Y, et al. Factors affecting pathologic complete response following neoadjuvant chemotherapy in breast cancer: Development and validation of a predictive nomogram[J]. Radiology, 2021, 299(2): 290-300. DOI: 10.1148/radiol.2021203871.
[11]
HUANG X, LUO Z, LIANG W, et al. Survival nomogram for young breast cancer patients based on the SEER database and an external validation cohort[J]. Ann Surg Oncol, 2022, 29(9): 5772-5781. DOI: 10.1245/s10434-022-11911-8.
[12]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[13]
KOCHER M, RUGE M I, GALLDIKS N, et al. Applications of radiomics and machine learning for radiotherapy of malignant brain tumors[J]. Strahlenther Onkol, 2020, 196(10): 856-867. DOI: 10.1007/s00066-020-01626-8.
[14]
ZHOU H, VALLIÈRES M, BAI H X, et al. MRI features predict survival and molecular markers in diffuse lower-grade gliomas[J]. Neuro Oncol, 2017, 19(6): 862-870. DOI: 10.1093/neuonc/now256.
[15]
VERDUIN M, PRIMAKOV S, COMPTER I, et al. Prognostic and predictive value of integrated qualitative and quantitative magnetic resonance imaging analysis in glioblastoma[J/OL]. Cancers (Basel), 2021, 13(4): 722 [2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/33578746/. DOI: 10.3390/cancers13040722.
[16]
DONG F, LI Q, JIANG B, et al. Differentiation of supratentorial single brain metastasis and glioblastoma by using peri-enhancing oedema region-derived radiomic features and multiple classifiers[J]. Eur Radiol, 2020, 30(5): 3015-3022. DOI: 10.1007/s00330-019-06460-w.
[17]
MEIER R, PAHUD DE MORTANGES A, WIEST R, et al. Exploratory Analysis of Qualitative MR Imaging Features for the Differentiation of Glioblastoma and Brain Metastases[J/OL]. Front Oncol, 2020, 10: 581037 [2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/33425734/. DOI: 10.3389/fonc.2020.581037.
[18]
LI G, LI L, LI Y, et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas[J]. Brain, 2022, 145(3): 1151-1161. DOI: 10.1093/brain/awab340.
[19]
LU Z Y, ZHANG Y , LIU X C, et al. The value of multi-sequence MRI-based radiomics in differential diagnosis of meningioma[J]. Chin J Magn Reson Imaging, 2024, 15(5): 47-54. DOI: 10.12015/issn.1674-8034.2024.05.009.
[20]
CHEN X, FANG M, DONG D, et al. Development and validation of a MRI-based radiomics prognostic classifier in patients with primary glioblastoma multiforme[J]. Acad Radiol, 2019, 26(10): 1292-1300. DOI: 10.1016/j.acra.2018.12.016.
[21]
YOU W, MAO Y, JIAO X, et al. The combination of radiomics features and VASARI standard to predict glioma grade[J/OL]. Front Oncol, 2023, 13: 1083216 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/37035137/. DOI: 10.3389/fonc.2023.1083216.
[22]
XU L, YANG P, LIANG W, et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma[J]. Theranostics, 2019, 9(18): 5374-5385. DOI: 10.7150/thno.34149.
[23]
SU C Q, CHEN X T, DUAN S F, et al. A radiomics-based model to differentiate glioblastoma from solitary brain metastases[J/OL]. Clin Radiol, 2021, 76(8): 629.e11-629.e18 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/34092362/. DOI: 10.1016/j.crad.2021.04.012.
[24]
PEEKEN J C, HESSE J, HALLER B, et al. Semantic imaging features predict disease progression and survival in glioblastoma multiforme patients[J]. Strahlenther Onkol, 2018, 194(6): 580-590. DOI: 10.1007/s00066-018-1276-4.
[25]
HYARE H, RICE L, THUST S, et al. Modelling MR and clinical features in grade Ⅱ/Ⅲ astrocytomas to predict IDH mutation status[J]. Eur J Radiol, 2019, 114: 120-127. DOI: 10.1016/j.ejrad.2019.03.003.
[26]
BENZAKOUN J, ROBERT C, LEGRAND L, et al. Anatomical and functional MR imaging to define tumoral boundaries and characterize lesions in neuro-oncology[J]. Cancer Radiother, 2020, 24(5): 453-462. DOI: 10.1016/j.canrad.2020.03.005.
[27]
ORTIZ-RAMÓN R, RUIZ-ESPAÑA S, MOLLÁ-OLMOS E, et al. Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach[J]. Phys Med, 2020, 76: 44-54. DOI: 10.1016/j.ejmp.2020.06.016.
[28]
JHA R M, KOCHANEK P M, SIMARD J M. Pathophysiology and treatment of cerebral edema in traumatic brain injury[J]. Neuropharmacology, 2019, 145(Pt B): 230-246. DOI: 10.1016/j.neuropharm.2018.08.004.
[29]
SONG J, ZONG H Q, ZHANG Y, et al. MRS combined with subtraction technique in the prediction of high grade glioma radiomics grading[J]. Chin J Magn Reson Imaging, 2023, 14(6): 59-65. DOI: 10.12015/issn.1674-8034.2023.06.009.
[30]
YE Z, PRICE R L, LIU X, et al. Diffusion histology imaging combining diffusion basis spectrum imaging (DBSI) and machine learning improves detection and classification of glioblastoma pathology[J]. Clin Cancer Res, 2020, 26(20): 5388-5399. DOI: 10.1158/1078-0432.CCR-20-0736.
[31]
MAO J, ZENG W, ZHANG Q, et al. Differentiation between high-grade gliomas and solitary brain metastases: a comparison of five diffusion-weighted MRI models[J/OL]. BMC Med Imaging, 2020, 20(1): 124 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/33228564/. DOI: 10.1186/s12880-020-00524-w.
[32]
VAN SANTWIJK L, KOUWENBERG V, MEIJER F, et al. A systematic review and meta-analysis on the differentiation of glioma grade and mutational status by use of perfusion-based magnetic resonance imaging[J/OL]. Insights Imaging, 2022, 13(1): 102 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/35670981/. DOI: 10.1186/s13244-022-01230-7.
[33]
MANSOUR M, VITALE V, LOMBARDI G, et al. Modification of MRI pattern of high-grade glioma pseudoprogression in regorafenib therapy[J]. J Med Imaging Radiat Oncol, 2022, 66(3): 414-418. DOI: 10.1111/1754-9485.
[34]
FRINGUELLO MINGO A, COLOMBO SERRA S, MACULA A, et al. Amplifying the effects of contrast agents on magnetic resonance images using a deep learning method trained on synthetic data[J]. Invest Radiol, 2023, 58(12): 853-864. DOI: 10.1097/RLI.0000000000000998.
[35]
GRGAC K, LI W, HUANG A, et al. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities[J]. Magn Reson Imaging, 2017, 38: 234-249. DOI: 10.1016/j.mri.2016.12.012.
[36]
AVANZO M, WEI L, STANCANELLO J, et al. Machine and deep learning methods for radiomics[J/OL]. Med Phys, 2020, 47(5): e185-e202 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/32418336/. DOI: 10.1002/mp.13678.
[37]
PRIYA S, LIU Y, WARD C, et al. Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics[J/OL]. Sci Rep, 2021, 11(1): 10478 [2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/34006893/. DOI: 10.1038/s41598-021-90032-w.
[38]
LAPOINTE S, PERRY A, BUTOWSKI N A. Primary brain tumours in adults[J]. Lancet, 2018, 392(10145): 432-446. DOI: 10.1016/S0140-6736(18)30990-5.

PREV Exploring the cut-off age value of marrow transformation in children,s clivus by MRI
NEXT Clinical value in predicting the microstructural alterations of substantia nigra in patients with early Parkinson,s disease based on SyMRI relaxation quantitative analysis and QSM
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn