Share:
Share this content in WeChat
X
Clinical Article
Cardiac magnetic resonance evaluation of myocardial tissue characterization of different left ventricular phenotypes in patients with chronic kidney disease
PU Qian  YANG Huiyi  PENG Pengfei  YUE Xun  YUE Shuting  DENG Qiao  TANG Lu  WU Tao  YU Yang  FU Ping  YU Shaobin  SUN Jiayu 

Cite this article as: PU Q, YANG H Y, PENG P F, et al. Cardiac magnetic resonance evaluation of myocardial tissue characterization of different left ventricular phenotypes in patients with chronic kidney disease[J]. Chin J Magn Reson Imaging, 2024, 15(8): 124-131. DOI:10.12015/issn.1674-8034.2024.08.019.


[Abstract] Objective To analyze the myocardial strain, native T1 and T2 values of different left ventricular phenotypes in chronic kidney disease (CKD) patients by cardiac magnetic resonance (CMR), and to investigate the myocardial tissue characterization of different left ventricular phenotypes.Materials and Methods Prospective inclusion of 114 CKD patients and 30 age- and gender- matched healthy controls (control group). The scanning sequences included cardiac cine, T1 mapping and T2 mapping sequences. According to the left ventricular remodeling index (LVRI) and left ventricular mass index (LVMI), CKD patients were divided into the following four subgroups: normal geometry (n=43), concentric remodeling (n=22), concentric left ventricular hypertrophy (LVH) (n=20), and eccentric LVH (n=29). Cardiac post-processing software CVI 42 was used to measure left ventricular myocardial strain and strain rate, including global circumferential, radial and longitudinal strain, systolic global circumferential, radial and longitudinal strain rate, diastolic global circumferential, radial and longitudinal strain rate. Native T1 and T2 values were also measured. The myocardial tissue characterization of different left ventricular phenotypes was investigated. Univariate and multivariate linear regression analyses were used to explore the relationship between myocardial tissue characterization and physiological variables.Results Except for global circumferential strain [-18.40% (3.30%) vs. -19.71%±1.66%, P=0.063] and global radial strain (30.63%±7.03% vs. 34.07%±4.61%, P=0.324) in normal geometry group, other myocardial strain parameters in CKD patients were significantly lower than those in control group (all P<0.05). Strain analysis showed that the lowest global radial strain (22.02%±8.31%) was found in the eccentric LVH group. The lowest global circumferential strain (-14.42%±3.24%) and global longitudinal strain (-9.55%±2.79%) were found in the concentric LVH group. Strain rate analysis showed that eccentric LVH group had the lowest systolic global circumferential strain rate [(-0.84±0.25) s-1], diastolic global circumferential strain rate [(0.73±0.29) s-1], systolic global radial strain rate [(1.25±0.46) s-1] and diastolic global radial strain rate [(-1.18±0.50) s-1]. Concentric LVH group had the lowest systolic global longitudinal strain rate [(-0.62±0.16) s-1] and diastolic global longitudinal strain rate [(0.53±0.14) s-1]. There was no significant difference in native T1 values between concentric remodeling group and control group [1 285.50 (85.25) ms vs. (1 262.53±38.18) ms, P=0.083]. Eccentric LVH group had the largest native T1 value, which was significantly higher than that of control group [(1 351.10±58.49) ms, vs. (1 262.53±38.18) ms, P<0.001). Compared with control group, T2 values were significantly increased in all four patient subgroups (all P<0.05), and the T2 value [(54.86±8.71) ms] of eccentric LVH group was the largest. There was no significant difference in T2 values among different subgroups of CKD patients (all P>0.05). Native T1 value was independently correlated with hemoglobin content (adjusted R2=0.216, β=-0.442, P<0.001) and serum creatinine (adjusted R2=0.216, β=-0.220, P=0.010).Conclusions CKD patients have decreased myocardial strain and increased native T1 and T2 values. The changes of myocardial tissue characterization are most obvious in patients with eccentric LVH.
[Keywords] chronic kidney disease;magnetic resonance imaging;T1 mapping;feature tracking technology;myocardial strain;left ventricular hypertrophy;left ventricular phenotypes

PU Qian1   YANG Huiyi1, 2   PENG Pengfei1   YUE Xun1, 2   YUE Shuting1, 2   DENG Qiao1   TANG Lu1   WU Tao1   YU Yang3   FU Ping3   YU Shaobin3   SUN Jiayu1*  

1 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China

2 Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

3 Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China

Corresponding author: SUN J Y, E-mail: cardiac_wchscu@163.com

Conflicts of interest   None.

Received  2024-04-22
Accepted  2024-08-05
DOI: 10.12015/issn.1674-8034.2024.08.019
Cite this article as: PU Q, YANG H Y, PENG P F, et al. Cardiac magnetic resonance evaluation of myocardial tissue characterization of different left ventricular phenotypes in patients with chronic kidney disease[J]. Chin J Magn Reson Imaging, 2024, 15(8): 124-131. DOI:10.12015/issn.1674-8034.2024.08.019.

[1]
SARNAK M J, AMANN K, BANGALORE S, et al. Chronic kidney disease and coronary artery disease [J]. J Am Coll Cardiol, 2019, 74(14): 1823-1838. DOI: 10.1016/j.jacc.2019.08.1017.
[2]
ZOCCALI C, MALLAMACI F, ADAMCZAK M, et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association[J]. Cardiovasc Res, 2023, 119(11): 2017-2032. DOI: 10.1093/cvr/cvad083.
[3]
LIN L, XIE Q X, ZHENG M, et al. Identification of cardiovascular abnormalities by multiparametric magnetic resonance imaging in end-stage renal disease patients with preserved left ventricular ejection fraction[J]. Eur Radiol, 2021, 31(9): 7098-7109. DOI: 10.1007/s00330-021-07752-w.
[4]
RANKIN A J, MANGION K, LEES J S, et al. Myocardial changes on 3T cardiovascular magnetic resonance imaging in response to haemodialysis with fluid removal[J/OL]. J Cardiovasc Magn R, 2021, 23(1): 125 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580743/. DOI: 10.1186/s12968-021-00822-4.
[5]
CANAUD B, KOOMAN J P, SELBY N M, et al. Dialysis-induced cardiovascular and multiorgan morbidity[J]. Kidney Int Rep, 2020, 5(11): 1856-1869. DOI: 10.1016/j.ekir.2020.08.031.
[6]
KAESLER N, BABLER A, FLOEGE J, et al. Cardiac remodeling in chronic kidney disease[J/OL]. Toxins, 2020, 12(3): 161 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150902/. DOI: 10.3390/toxins12030161.
[7]
LEI Y, TONG J, SU Y, et al. Risk factors of left ventricular diastolic dysfunction in maintenance hemodialysis patients[J/OL]. BMC Nephrol, 2023, 24(1): 166 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258965/. DOI: 10.1186/s12882-023-03220-3.
[8]
HSU H-C, TADE G, ROBINSON C, et al. Associations of traditionally determined left ventricular mass indices and hemodynamic and non-hemodynamic components of cardiac remodeling with diastolic and systolic function in patients with chronic kidney disease[J/OL]. J Clin Med, 2023, 12(13): 4211 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342723/. DOI: 10.3390/jcm12134211.
[9]
JIN S Q, WANG F, TIAN Z X, et al. Myocardial injury in peritoneal dialysis patients assessed by multiparametric MRI: relationship with left ventricular phenotypes [J/OL]. J Magn Reson Imaging, 2024 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/38311966/. DOI: 10.1002/jmri.29261.
[10]
TADIC M, SALA C, CARUGO S, et al. Myocardial strain and left ventricular geometry: a meta-analysis of echocardiographic studies in systemic hypertension[J]. J Hypertens, 2021, 39(11): 2297-2306. DOI: 10.1097/HJH.0000000000002911.
[11]
HAN X Y, HE F F, CAO Y K, et al. Associations of B-type natriuretic peptide (BNP) and dialysis vintage with CMRI-derived cardiac indices in stable hemodialysis patients with a preserved left ventricular ejection fraction[J]. Int J Cardiovasc Imaging, 2020, 36(11): 2265-2278. DOI: 10.1007/s10554-020-01942-1.
[12]
ZOCCALI C, MARK P B, SARAFIDIS P, et al. Diagnosis of cardiovascular disease in patients with chronic kidney disease[J]. Nat Rev Nephrol, 2023, 19(11): 733-746. DOI: 10.1038/s41581-023-00747-4.
[13]
MANGION K, MCDOWELL K, MARK P B, et al. Characterizing cardiac involvement in chronic kidney disease using CMR-a systematic review[J/OL]. Curr Cardiovasc Imag, 2018, 11(1): 2 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818546/. DOI: 10.1007/s12410-018-9441-9.
[14]
PALAMUTHUSINGAM D, REYALDEEN R, JOHNSON D W, et al. Assessment of cardiac structure and function in kidney failure: understanding echocardiography and magnetic resonance imaging for the nephrologist[J]. Int Urol Nephrol, 2021, 53(4): 699-712. DOI: 10.1007/s11255-020-02610-y.
[15]
MARK P B, MANGION K, RANKIN A J, et al. Left ventricular dysfunction with preserved ejection fraction: the most common left ventricular disorder in chronic kidney disease patients[J]. Clin Kidney J, 2022, 15(12): 2186-2199. DOI: 10.1093/ckj/sfac146.
[16]
DETTORI R, MILZI A, LUBBERICH R K, et al. Chronic kidney disease is related to impaired left ventricular strain as assessed by cardiac magnetic resonance imaging in patients with ischemic cardiomyopathy[J/OL]. Clin Res Cardiol, 2023 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/38078956/. DOI: 10.1007/s00392-023-02346-6.
[17]
KAMMERLANDER A A. Feature tracking by cardiovascular magnetic resonance imaging: the new gold standard for systolic function?[J]. JACC Cardiovasc Imaging, 2020, 13(4): 948-950. DOI: 10.1016/j.jcmg.2019.11.015.
[18]
DöRR K, KAMMERLANDER A, LAURIERO F, et al. Effect of etelcalcetide versus alfacalcidol on left ventricular function and feature-tracking cardiac magnetic resonance imaging in hemodialysis—a post-hoc analysis of a randomized, controlled trial[J/OL]. J Cardiovasc Magn R, 2023, 25(1): 62 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626812/. DOI: 10.1186/s12968-023-00975-4.
[19]
TAWFIK A M, SOBH D M, GADELHAK B, et al. Right ventricular strain analysis by tissue tracking cardiac magnetic resonance imaging in pediatric patients with end-stage renal disease[J]. J Thorac Imaging, 2024, 39(1): 49-56. DOI: 10.1097/RTI.0000000000000716.
[20]
ARCARI L, ENGEL J, FREIWALD T, et al. Cardiac biomarkers in chronic kidney disease are independently associated with myocardial edema and diffuse fibrosis by cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn R, 2021, 23(1): 71 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183054/. DOI: 10.1186/s12968-021-00762-z.
[21]
HAYER M K, RADHAKRISHNAN A, PRICE A M, et al. Defining myocardial abnormalities across the stages of chronic kidney disease: a cardiac magnetic resonance imaging study[J]. JACC Cardiovasc Imaging, 2020, 13(11): 2357-2367. DOI: 10.1016/j.jcmg.2020.04.021.
[22]
VALBUENA-LóPEZ S C, CAMASTRA G, CACCIOTTI L, et al. Cardiac imaging biomarkers in chronic kidney disease[J/OL]. Biomolecules, 2023, 13(5): 773 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216582/. DOI: 10.3390/biom13050773.
[23]
JIA X, HAN X, WANG Y, et al. Cardiac magnetic resonance imaging parameters show association between myocardial abnormalities and severity of chronic kidney disease[J/OL]. Front Cardiovasc Med, 2022, 9: 1053122 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712745/. DOI: 10.3389/fcvm.2022.1053122.
[24]
VIRANI S S, NEWBY L K, ARNOLD S V, et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: a report of the American heart association/american college of cardiology joint committee on clinical practice guidelines[J/OL]. Circulation, 2023, 148(9): e9-e119 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/37471501/. DOI: 10.1161/CIR.0000000000001168.
[25]
KOVESDY C P. Epidemiology of chronic kidney disease: an update 2022[J]. Kidney Int Suppl, 2022, 12(1): 7-11. DOI: 10.1016/j.kisu.2021.11.003.
[26]
KRAMER C M, BARKHAUSEN J, BUCCIARELLI-DUCCI C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update[J/OL]. J Cardiovasc Magn R, 2020, 22(1): 17 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038611/. DOI: 10.1186/s12968-020-00607-1.
[27]
SCHULZ-MENGER J, ABDEL-ATY H, RUDOLPH A, et al. Gender-specific differences in left ventricular remodelling and fibrosis in hypertrophic cardiomyopathy: insights from cardiovascular magnetic resonance[J]. Eur J Heart Fail, 2008, 10(9): 850-854. DOI: 10.1016/j.ejheart.2008.06.021.
[28]
QI L, ZHI B B, ZHANG J, et al. Defining biventricular abnormalities by cardiac magnetic resonance in pre-dialysis patients with chronic kidney disease[J]. Kidney Dis, 2023, 9(4): 277-284. DOI: 10.1159/000529526.
[29]
CHEN C, LIU L L, LIU S R, et al. 24-h central pressure is a valuable predictor for left ventricular hypertrophy in non-dialysis patients with chronic kidney disease[J]. Hypertens Res, 2024, 47(6): 1697-1706. DOI: 10.1038/s41440-024-01654-2.
[30]
ZHANG T Y, AN D A, ZHOU H, et al. Texture analysis of native T1 images as a novel method for non-invasive assessment of heart failure with preserved ejection fraction in end-stage renal disease patients[J]. Eur Radiol, 2023, 33(3): 2027-2038. DOI: 10.1007/s00330-022-09177-5.
[31]
STROMP T A, SPEAR T J, HOLTKAMP R M, et al. Quantitative gadolinium-free cardiac fibrosis imaging in end stage renal disease patients reveals a longitudinal correlation with structural and functional decline[J/OL]. Sci Rep-UK, 2018, 8: 16972 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242893/. DOI: 10.1038/s41598-018-35394-4.
[32]
RANKIN A J, ZHU L K, MANGION K, et al. Global longitudinal strain by feature-tracking cardiovascular magnetic resonance imagingpredicts mortality in patients with end-stage kidney disease[J]. Clin Kidney J, 2021, 14(10): 2187-2196. DOI: 10.1093/ckj/sfab020.
[33]
MISKULIN D C, JIANG H, GUL A, et al. Comparison of dialysis unit and home blood pressures: an observational cohort study[J]. Am J Kidney Dis, 2021, 78(5): 640-648. DOI: 10.1053/j.ajkd.2021.04.013.
[34]
ARCARI L, HINOJAR R, ENGEL J, et al. Native T1 and T2 provide distinctive signatures in hypertrophic cardiac conditions - Comparison of uremic, hypertensive and hypertrophic cardiomyopathy[J/OL]. Int J Cardiol, 2020, 306: 102-108 [2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/32169347/. DOI: 10.1016/j.ijcard.2020.03.002.
[35]
ALANSARI H, WALD R, DEVA D P, et al. Relationships between cardiac structural and functional assessment by cardiac MRI and hemoglobin in end-stage renal disease[J]. J Nephrol, 2021, 34(5): 1561-1563. DOI: 10.1007/s40620-021-01123-w.
[36]
TADE G, HSU H-C, WOODIWISS A J, et al. Uric acid, ferritin, albumin, parathyroid hormone and gamma-glutamyl transferase concentrations are associated with uremic cardiomyopathy characteristics in non-dialysis and dialysis chronic kidney disease patients[J/OL]. Int J Nephrol Renov, 2022,15: 353-369 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741815/. DOI: 10.2147/ijnrd.S389539.

PREV Value of a clinical-multiparametric MRI diagnostic model based on Kaiser score in the differential diagnosis of benign and malignant breast lesions
NEXT Clinical application value of predicting microvascular invasion in hepatocellular carcinoma using intratumoral and peritumoral radiomics models: A multicenter study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn