Share:
Share this content in WeChat
X
Clinical Article
Clinical application value of predicting microvascular invasion in hepatocellular carcinoma using intratumoral and peritumoral radiomics models: A multicenter study
ZHU Zhu  YU Yixing  LU Jian  XU Dabo  ZHANG Tao  FANG Wei  LU Xinyu  GU Wenhao 

Cite this article as: ZHU Z, YU Y X, LU J, et al. Clinical application value of predicting microvascular invasion in hepatocellular carcinoma using intratumoral and peritumoral radiomics models: A multicenter study[J]. Chin J Magn Reson Imaging, 2024, 15(8): 132-138. DOI:10.12015/issn.1674-8034.2024.08.020.


[Abstract] Objective The aim of this study was to evaluate the predictive value of intratumoral and peritumoral radiomics models for microvascular invasion (MVI) in hepatocellular carcinoma (HCC).Materials and Methods Gadoxetic acid disodium (Gd-EOB-DTPA) enhanced MRI images of patients with surgically pathologically confirmed HCC at three hospitals between 2016 and 2023 were retrospectively analyzed, as well as seven clinical information, including gender, age, maximum tumor diameter, alpha-fetoprotein (AFP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and the presence or absence of hepatitis B. Intratumoral regions and 5 mm and 10 mm peritumoral regions of interest (ROI) were outlined in arterial phase images, portal venous phase images, and hepatobiliary phase images, from which radiomics features were extracted; in the training cohort, multifactorial logistic regression analysis was applied to screen independent clinical predictors of MVI; support vector machine (SVM) was applied to establish a total of 10 models including intratumoral models, peritumoral models, intratumoral combined peritumoral models, clinical model, and clinical-radiomics combined model. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of the models and DeLong test was employed to compare the difference of area under the curve (AUC).Results Maximum tumor diameter [dominance ratio (OR): 1.449, 95% confidence interval (CI): 1.212-1.733] and AFP (OR: 1.645, 95% CI: 0.665-4.071) were independent clinical predictors of MVI based on the training cohort. In the validation cohort, the AUCs of the clinical model, intratumoral models, peritumoral models, intratumoral plus peritumoral models, and clinical-radiomics combined model for predicting MVI of HCC were 0.728, 0.764-0.820, 0.791-0.795, 0.804-0.828, and 0.747, respectively, and those of the intratumoral plus 5 mm peritumoral model, intratumoral plus 10 mm peritumoral model were 0.828 (95% CI: 0.728-0.929), 0.804 (95% CI: 0.696-0.913). Among the models, the AUC of the intratumoral plus 5 mm peritumoral model was statistically different from that of the clinical model and the clinical-radiomics combined model (P=0.039, 0.028), and the differences in the AUCs among the rest of the models were not statistically significant (P>0.05).Conclusions The Gd-EOB-DTPA-based enhanced MRI radiomics models can be used for preoperative prediction of HCC MVI, in which the intratumoral plus 5 mm peritumoral model has a higher predictive ability for HCC MVI. This model helps in the development of individualized treatment.
[Keywords] radiomics;magnetic resonance imaging;Gd-EOB-DTPA;microvascular invasion;hepatocarcinoma

ZHU Zhu1   YU Yixing2   LU Jian3   XU Dabo1   ZHANG Tao3   FANG Wei1   LU Xinyu1   GU Wenhao1*  

1 Department of Radiology, The First People's Hospital of Taicang, Affiliated Hospital of Soochow University, Suzhou 215400, China

2 Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China

3 Department of Radiology, The Third Affiliated Hospital of Nantong University, The Third People's Hospital of Nantong, Nantong 226000, China

Corresponding author: GU W H, E-mail: tyyyxkgu@163.com

Conflicts of interest   None.

Received  2024-03-03
Accepted  2024-07-12
DOI: 10.12015/issn.1674-8034.2024.08.020
Cite this article as: ZHU Z, YU Y X, LU J, et al. Clinical application value of predicting microvascular invasion in hepatocellular carcinoma using intratumoral and peritumoral radiomics models: A multicenter study[J]. Chin J Magn Reson Imaging, 2024, 15(8): 132-138. DOI:10.12015/issn.1674-8034.2024.08.020.

[1]
LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J/OL]. Nat Rev Dis Primers, 2021, 7(1): 6 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pubmed/33479224. DOI: 10.1038/s41572-020-00240-3.
[2]
TÜMEN D, HEUMANN P, GÜLOW K, et al. Pathogenesis and current treatment strategies of hepatocellular carcinoma[J/OL]. Biomedicines, 2022, 10(12): 3202 [2024-03-12]. https://www.mdpi.com/2227-9059/10/12/3202. DOI: 10.3390/biomedicines10123202.
[3]
COTTON J L, SUAREZ-PIERRE A, BREITHAUPT J J, et al. Survival following liver transplantation: a population-based nested case-control study[J]. Am J Surg, 2024, 228: 264-272. DOI: 10.1016/j.amjsurg.2023.10.039.
[4]
GOVALAN R, LAUZON M, LUU M, et al. Comparison of surgical resection and systemic treatment for hepatocellular carcinoma with vascular invasion: national cancer database analysis[J]. Liver Cancer, 2021, 10(5): 407-418. DOI: 10.1159/000515554.
[5]
VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362. DOI: 10.1016/s0140-6736(22)01200-4.
[6]
ERSTAD D J, TANABE K K. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma[J]. Ann Surg Oncol, 2019, 26(5): 1474-1493. DOI: 10.1245/s10434-019-07227-9.
[7]
KANG I, JANG M, LEE J G, et al. Subclassification of microscopic vascular invasion in hepatocellular carcinoma[J/OL]. Ann Surg, 2021, 274(6): e1170-e1178 [2024-03-12]. https://journals.lww.com/annalsofsurgery/toc/2021/12000. DOI: 10.1097/SLA.0000000000003781.
[8]
ZHANG X F, LI J, SHEN F, et al. Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2018, 33(2): 347-354. DOI: 10.1111/jgh.13843.
[9]
ZHENG Z H, GUAN R G, JIANXI W, et al. Microvascular invasion in hepatocellular carcinoma: a review of its definition, clinical significance, and comprehensive management[J/OL]. J Oncol, 2022, 2022: 9567041 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/35401743. DOI: 10.1155/2022/9567041.
[10]
ROBERTS L R, SIRLIN C B, ZAIEM F, et al. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis[J]. Hepatology, 2018, 67(1): 401-421. DOI: 10.1002/hep.29487.
[11]
HWANG Y J, BAE J S, LEE Y, et al. Classification of microvascular invasion of hepatocellular carcinoma: correlation with prognosis and magnetic resonance imaging[J]. Clin Mol Hepatol, 2023, 29(3): 733-746. DOI: 10.3350/cmh.2023.0034.
[12]
LEE S, KANG T W, SONG K D, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3): 564-571. DOI: 10.1097/SLA.0000000000003268.
[13]
COURT C M, HARLANDER-LOCKE M P, MARKOVIC D, et al. Determination of hepatocellular carcinoma grade by needle biopsy is unreliable for liver transplant candidate selection[J]. Liver Transpl, 2017, 23(9): 1123-1132. DOI: 10.1002/lt.24811.
[14]
LV K, CAO X, DU P, et al. Radiomics for the detection of microvascular invasion in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(20): 2176-2183. DOI: 10.3748/wjg.v28.i20.2176.
[15]
KITAO A, MATSUI O, YONEDA N, et al. Gadoxetic acid-enhanced MR imaging for hepatocellular carcinoma: molecular and genetic background[J]. Eur Radiol, 2020, 30(6): 3438-3447. DOI: 10.1007/s00330-020-06687-y.
[16]
YANG Y, ZHANG S, CUI C, et al. Multiphase MRI-based radiomics for predicting histological grade of hepatocellular carcinoma[J/OL]. J Magn Reson Imaging, 2024 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/38344854/. DOI: 10.1002/jmri.29289.
[17]
HU Y H, XIE C Y, YANG H, et al. Assessment of intratumoral and peritumoral computed tomography radiomics for predicting pathological complete response to neoadjuvant chemoradiation in patients with esophageal squamous cell carcinoma[J/OL]. JAMA Netw Open, 2020, 3(9): e2015927 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pubmed/32910196. DOI: 10.1001/jamanetworkopen.2020.15927.
[18]
MAO N, SHI Y H, LIAN C, et al. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography[J]. Eur Radiol, 2022, 32(5): 3207-3219. DOI: 10.1007/s00330-021-08414-7.
[19]
KHORRAMI M, KHUNGER M, ZAGOURAS A, et al. Combination of peri- and intratumoral radiomic features on baseline CT scans predicts response to chemotherapy in lung adenocarcinoma[J/OL]. Radiol Artif Intell, 2019, 1(2): e180012 [2024-03-12]. https://www.ncbi.nlm.nih.gov/pubmed/32076657. DOI: 10.1148/ryai.2019180012.
[20]
FENG S T, JIA Y M, LIAO B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI[J]. Eur Radiol, 2019, 29(9): 4648-4659. DOI: 10.1007/s00330-018-5935-8.
[21]
YANG L, GU D S, WEI J W, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2019, 8(5): 373-386. DOI: 10.1159/000494099.
[22]
YANG Y, FAN W J, GU T, et al. Radiomic features of multi-ROI and multi-phase MRI for the prediction of microvascular invasion in solitary hepatocellular carcinoma[J/OL]. Front Oncol, 2021, 11: 756216 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/34692547/. DOI: 10.3389/fonc.2021.756216.
[23]
LEE S, KIM S H, LEE J E, et al. Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma[J]. J Hepatol, 2017, 67(3): 526-534. DOI: 10.1016/j.jhep.2017.04.024.
[24]
GAO L M, XIONG M L, CHEN X J, et al. Multi-region radiomic analysis based on multi-sequence MRI can preoperatively predict microvascular invasion in hepatocellular carcinoma[J/OL]. Front Oncol, 2022, 12: 818681 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/35574328/. DOI: 10.3389/fonc.2022.818681.
[25]
LIU W M, ZHAO X Y, GU M T, et al. Radiomics of preoperative multi-sequence magnetic resonance imaging can improve the predictive performance of microvascular invasion in hepatocellular carcinoma[J]. World J Oncol, 2024, 15(1): 58-71. DOI: 10.14740/wjon1731.
[26]
JENG K S, JENG W J, SHEEN I S, et al. Is less than 5 mm as the narrowest surgical margin width in central resections of hepatocellular carcinoma justified?[J]. Am J Surg, 2013, 206(1): 64-71. DOI: 10.1016/j.amjsurg.2012.06.010.
[27]
SASAKI K, MATSUDA M, OHKURA Y, et al. Minimum resection margin should be based on tumor size in hepatectomy for hepatocellular carcinoma in hepatoviral infection patients[J]. Hepatol Res, 2013, 43(12): 1295-1303. DOI: 10.1111/hepr.12079.
[28]
CHAO J S, ZHU Q, CHEN D S, et al. Combined analysis of imaging tumor capsule with imaging tumor size guides the width of resection margin for solitary hepatocellular carcinoma[J]. Hepatobiliary Pancreat Dis Int, 2022, 21(6): 551-558. DOI: 10.1016/j.hbpd.2021.12.009.
[29]
ISIK B, GONULTAS F, SAHIN T, et al. Microvascular venous invasion in hepatocellular carcinoma: why do recurrences occur?[J]. J Gastrointest Cancer, 2020, 51(4): 1133-1136. DOI: 10.1007/s12029-020-00487-9.
[30]
DENG Y H, YANG D W, TAN X Z, et al. Preoperative evaluation of microvascular invasion in hepatocellular carcinoma with a radiological feature-based nomogram: a bi-centre study[J/OL]. BMC Med Imaging, 2024, 24(1): 29 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/38281008. DOI: 10.1186/s12880-024-01206-7.
[31]
FUJITA N, USHIJIMA Y, ISHIMATSU K, et al. Multiparametric assessment of microvascular invasion in hepatocellular carcinoma using gadoxetic acid-enhanced MRI[J]. Abdom Radiol, 2024, 49(5): 1467-1478. DOI: 10.1007/s00261-023-04179-3.
[32]
EL-SERAG H B. Epidemiology of viral hepatitis and hepatocellular carcinoma[J]. Gastroenterology, 2012, 142(6): 1264-1273. DOI: 10.1053/j.gastro.2011.12.061.
[33]
CHEN J G, CHEN H Z, ZHU J, et al. Survival of liver cancer inpatients from Qidong and Haimen region of Jiangsu Province[J]. Chin J Public Health, 2019, 35(11): 1540-1543. DOI: 10.11847/zgggws1118728.
[34]
CHEN Y S, WANG J, DING L L, et al. Long-term trend analysis of liver cancer survival rate in Qidong region, Jiangsu Province, 1972-2019[J]. Chin J Hepatol, 2023, 31(6): 634-639. DOI: 10.3760/cma.j.cn501113-20220323-00133.
[35]
PARK H J, PARK B, LEE S S. Radiomics and deep learning: hepatic applications[J]. Korean J Radiol, 2020, 21(4): 387-401. DOI: 10.3348/kjr.2019.0752.
[36]
SONG P P, XIA J F, INAGAKI Y, et al. Controversies regarding and perspectives on clinical utility of biomarkers in hepatocellular carcinoma[J]. World J Gastroenterol, 2016, 22(1): 262-274. DOI: 10.3748/wjg.v22.i1.262.
[37]
HONG S B, CHOI S H, KIM S Y, et al. MRI features for predicting microvascular invasion of hepatocellular carcinoma: a systematic review and meta-analysis[J]. Liver Cancer, 2021, 10(2): 94-106. DOI: 10.1159/000513704.

PREV Cardiac magnetic resonance evaluation of myocardial tissue characterization of different left ventricular phenotypes in patients with chronic kidney disease
NEXT Prenatal MRI findings of type I congenital choledochal cyst and parameter measurement of liver and gallbladder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn